R과 Hadoop의 통합환경인 Rhipe 개발로 인해 분산처리 환경 하에서 대용량 데이터 분석이 가능해졌다. 본 논문에서는 Rhipe을 이용하여 실제 데이터와 모의실험 데이터에서 다양한 데이터 크기에 따라 다중 회귀분석을 구현하였다. Hadoop의 가상분산 모드(pseudo-dstributed mode)와 완전분산 모드(fully-distributed mode) 구축 시스템 비교에서 완전분산 모드 시스템이 가상분산 모드 시스템보다 처리 속도가 빠르고 데이터 노드의 수가 많을수록 계산 시간이 점점 줄어드는 것을 알 수 있었다. 또한, 제안된 Rhipe 플랫폼의 성능을 평가하기 위해 기본 R 패키지인 stats와 bigmemory 상에서 유용한 biglm 패키지와 처리 속도를 비교하였다. 실험결과 Rhipe은 데이터의 크기가 클수록 map task 개수가 증가되고 동시에 병렬 처리로 인해 다른 패키지들보다 빠른 처리속도를 보였다.
This paper presents a new object model, LOM(Lightweight Object Model) and an implementation method for the distributed trader in heterogeneous distributed computing environment including mobile network. Trader is third party object that enables clients to find suitable servers, which provide the most appropriate services to client in distributed environment including dynamic reconfiguration of services and servers. Trading service requires simpler and more specific object model than genetic object models which provide richer multimedia data types and semantic characteristics with complex data structures. LOM supports a new reference attribute type instead of the relationship, inheritance and composite attribute types of the general object oriented models and so LOM has simple data structures. Also in LOM, the modelling step includes specifying of the information about users and the access right to objects for security in the mobile environment and development of the distributed storage for trading service. Also, we propose and implementation method of the distributed trader, which integrates the LOM-information object model and the OMG (object Management Group) computational object model.
Mohsin Shaikh;Irfan Ali Tunio;Syed Muhammad Shehram Shah;Fareesa Khan Sohu;Abdul Aziz;Ahmad Ali
International Journal of Computer Science & Network Security
/
제23권5호
/
pp.207-211
/
2023
Traditional methods for datamining typically assume that the data is small, centralized, memory resident and static. But this assumption is no longer acceptable, because datasets are growing very fast hence becoming huge from time to time. There is fast growing need to manage data with efficient mining algorithms. In such a scenario it is inevitable to carry out data mining in a distributed environment and Frequent Itemset Mining (FIM) is no exception. Thus, the need of an efficient incremental mining algorithm arises. We propose the Distributed Incremental Approximate Frequent Itemset Mining (DIAFIM) which is an incremental FIM algorithm and works on the distributed parallel MapReduce environment. The key contribution of this research is devising an incremental mining algorithm that works on the distributed parallel MapReduce environment.
스마트 팩토리는 설계 개발, 제조, 유통 물류 등 생산 전체 과정에 정보 통신 기술을 적용하여 생산성, 품질, 고객만족도 등을 향상시킬 수 있는 지능형 공장이다. 스마트 팩토리에서 발생되는 데이터의 양은 공장의 규모 및 시설 수준에 따라 많은 차이를 보이지만, 기존의 생산관리시스템을 활용하여 방대한 양의 데이터를 발생시키는 스마트 팩토리 환경에 적용하기에 어려움이 있다. 이로 인해 방대한 양의 빅데이터 처리할 수 있는 빅데이터 분산 처리 시스템의 필요성이 요구되고 있다. 따라서 본 논문에서는 스마트 팩토리 환경에서의 GlusterFS 기반 빅데이터 분산 처리 시스템 설계하였다. 제안하는 빅데이터 분산 처리 시스템은 기존 분산 처리 시스템에 비해 네트워크 트래픽 분산 및 관리를 통해 부하와 데이터 소실 위험도를 감소시켰다.
In this paper a data replicator scheme with a distributed join architecture is suggested with its cost functions and the performance results. The contribution of this scheme is not only minimizing the number of base relation locks in distributed database tables but also reducing the remote transmission amount remarkably, which will be able to embellish the distributed databse system practical. The differential files that are derived from the active log of the DBMS are mainly forcing the scheme to reduce the number of base relation locks. The amount of transportation between relevant sites could be curtailed by the tuple reduction procedures. Then we prescribe an algorithm of data replicator with its cost function and show the performance results compared with the semi-join scheme in their distributed environments.
We envisage that grid computing environments allow us to implement distributed data mining services, that is, those applications which analyze large sets of geographically distributed databases and information using the computational power and resources of a grid environment. This paper describes an experimental framework towards such a distributed data mining approach, including design considerations and a prototype implementation. Based on the "Knowledge Grid" architecture suggested by Cannataro et al., we identify four major components - user node, broker node, data node, and computation node - and define their individual roles. For implementing the prototype, we have investigated methods for utilizing distributed resources within a grid computing environment, e.g., communication and coordination among the various resources available.
위치를 기반으로 하는 서비스가 다양해짐에 따라 고가용성과 고확장성을 제공하기 위한 분산 데이터 스트림 처리 기법에 대한 연구가 널리 수행되고 있다. 기존 연구는 분산된 노드들에서 부하의 균형을 유지하기 위해 공간 데이터 스트림의 지리적인 특성을 고려하지 않고 있어 공간적으로 인접한 연산을 수행함에 있어 전체 시스템의 부하를 증가시키고 있다. 본 논문에서는 분산 환경의 공간 데이터 스트림을 처리하기 위해 공간 영역의 겹침을 고려한 연산배치 기법을 제안한다. 제안 기법에서는 인접한 공간 영역을 대상으로 하는 연산을 효율적으로 분리하기 위해 질의 영역이 겹치는 부분의 연산을 우선적으로 동일 노드에 분배하여 중복 영역에 대한 공유의 최대화를 보장한다.
본 논문은 클라우딩 환경에서 클라이언트와 저장 서버, 검증 서버로 구성하여 자가 조직 저장 매체의 데이터 손실을 방지하고, 보안을 유지하기 위한 DDMPF( Distributed Data Management Protocol using FAT)을 제안한다. DDMPF는 클라우드 컴퓨팅 환경에서 자가 조직 저장 서버를 구축하고, 데이터를 분할하여 저장 서버에 분산 저장함으로써 기존의 클라우딩 저장 매체의 중앙 집중화 문제와 저장 서버 문제로 인한 데이터 손실 문제를 해결하였고, 파일할당테이블을 이용해 분산 저장된 데이터 관리의 효율성도 향상시켰다. 그리고 DDMPF는 저장 서버의 데이터 무결성을 검증 서버가 검증함으로써 데이터의 신뢰성을 향상시키고, 클라이언트의 비밀키와 EC-DH 알고리즘을 이용하여 생성된 시스템 마스터 키로 이중 암호화하여 전송함으로써 보안을 강화시켰다. 또한, 자가 조직 저장 매체를 구성할 때, 검증서버의 개수를 제한하고, 검증요청메시지에 대한 TS(Time Stamp)을 설정함으로써 플러딩 공격 탐지하였고, 검증을 요청할 때마다 새롭게 생성된 nonce 값을 이용하여 재전송 공격을 탐지하도록 하였다.
대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
/
pp.145-150
/
2002
Web GIS (Geographic Information Systems) service systems provide the various GIS services of analyzing and displaying the spatial data with friendly user-interface. These services are expanding the business domain and many users want to access the distributed various spatial data. But, it is difficult to access diverse data sources because of different spatial data format and data access methods. In this paper, we design and implement web GIS services based on the inter-operability and GML (Geography Markup Language) of OGC(Open GIS Consortium) in web distributed environment. Inter-operability provides unique accessing method to distributed data sources based on OLE DB technology of Microsoft. In addition, GML support web GIS services based on XML. We design these GIS services as components using UML (Unified Modeling Language) of an object-oriented modeling language for specifying, visualizing, constructing, and documenting the artifacts of software system. In addition, they also were developed in object-oriented computing environment, and it provides the interoperability, language-independent, easy developing environment as well as re-usability.
Journal of the Korean Data and Information Science Society
/
제22권5호
/
pp.989-998
/
2011
Cloud computing provides computation, software, data access, and storage services that do not require end-user knowledge of the physical location and configuration of the system that delivers the services. Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. One of the fundamental challenges in geographically distributed clouds is to provide efficient algorithms for supporting inter-cloud data management and dissemination. In this paper, we propose a group quorum system (GQS)-based dissemination for improving the interoperability of inter-cloud in time-critical event dissemination service, such as computing policy updating, message sharing, event notification and so forth. The proposed GQS-based method organizes these distributed clouds into a group quorum ring overlay to support a constant event dissemination latency. Our numerical results show that the GQS-based method improves the efficiency as compared with Chord-based and Plume methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.