A3d A% A Differential Data Replicator in Distributed Environments 3

A Differential Data Replicator in Distributed
Environments

Wookey Lee”, Jooseok Park ", Sukho Kang"*’

(Abstract)

in this paper a data replicator scheme with a distributed join architecture is suggested with its cost
functions and the performance results. The contribution of this scheme is not only minimizing the number of
base relation locks in distributed database tables but also reducing the remote transmission amount
remarkably, which will be able to embellish the distributed databse system practical. The differential files that
are derived from the active log of the DBMS are mainly forcing the scheme to reduce the number of base
relation locks. The amount of transportation between relevant sites could be curtailed by the tuple reduction
procedures, Then we prescribe an algorithm of data replicator with its cost function and show the performance

results compared with the semi-join scheme in their distributed environments.

Keywords: logs, DBMS, replication servers, reduction proceddres, semi-join, locks, materializ_ed views

+ Dept. of Computer Science Sungkyul Univ. AnYang, Korea
»» Dept. of Bus. and Admin. Kyunghee Univ. Seoul, Korea
»+» Dept. Industrial Engineering Seoul National University

Wookey Lee - Jooseok Park - Sukho Kang Hlo|EMIo|A XY

I. Introduction
A replication server is now one of the important tools to control the complex problems of transaction
consistency in distributed database systems. Data replications are basically nessessary and convenient

especially in the distributed environments. But it burdens the entire system since mutual consistency of those

replicated dz_ata must be hard. When communication fails between sites containing copies of the same logical
data item, mutual consistency among copies becomes perplexing to ensure, resulting in a pariition failure. It
fragments the network into isolated sub networks called partitions. There are several replica control algorithms
for managing replicated data in the face of network partitioning; these are primary site, voting, grid protocol
and so forth (3], [4], {5], (10] and [12]. But these algorithms severely limit data availability during network
partitioning and have the same disadvantages of 2PL [7).

v Other appmaché such as bulk reloads, data flagging, table snapshot, triggering or the rule-based approach
have been suggested to solve these problems, but materialized view is superior [15), [17], [22]. Virtual view -
which is derived from several tabl&s‘ does not physically exist but logically. Materialized view is stored as a
separate table; it is useful when users’ application may approve noncurrent data with which the replication
server manages materialized view on many sites and helps users to access the data they need. Furthermore, it
reflects net changes only in the base table, reducing communication costs and relieving the difficulty of
concurrency control, which helps the distributed database systems more pragmatic.

Most studies of materialized view have not considered their distributed environments. If ever, they are
confined to selection view(S-View) or selecﬁqn-projecﬁon view(SP-View). They do not support the
materialized views made by join operation. This study therefore, deals with the structure of a replication server

to update join materialized views in its distributed environment.

A3A A2z A Differential Data Replicator in Distributed Environments

Base Table

‘| TID | VTID A.--~A.I'rs‘ \:pd,,,

lTnnucﬂonl
Differential File / creats
VTID | Ar-++ As | Op_Code| TS| PrevTS View

Definition

input \‘Duplieau ellmlnmonl / input
Screen Test

Postscroen elimination]/

Global Update File

VTID | As| Op_Code | {Site,VID} /l -
Creal

[Figure 1-1] The materialized view update procedure

We employ the differential update method which utilize logs that record the change of base tables during a
certain period (the same refresh time, t) as dfferential files. In [figure 1-1] TID means thephysical identifier of
a tuple, VTID means the unique identifier of the tuple, Au indicates the attribute related. TSB and TSP means
the timestamp that the tuple that was updated in the base table and that was appended to the defferential file
respectively. And the Op-Code means the operation codes (i.c., insertion, deletion, and modification) and the
VID is the relevant view identifier. This method avoids base table locking, making the system's performance
efficient. In this study, we update materialized view periodically to save the updating costs [17]. Then a screen
test is applied to differential tuples in order to eliminate tuples that are irrelevant to any of the views being
updated. Using these methods, we prescribe an architecture of replication server and an algorithm to update
materialized view efficiently.

II. An architecture of the Scheme

1. The Concept of Differential Update

The differential update scheme utilizes the log as a differential file that records net changes of the base
table just after updating materialized views. This minimizes communication costs and reduces the number of

base table access, which makes performance of the system more efficient [17). When a base tuple is updated

6 Wookey Lee - Jooseok Park - Sukho Kang CIojEMo|A Xd

by multiple transactions between refresh times, we can get all the views that have the same last refresh time
denoted LR; =RTj [16, 17, 21). The primary key of the differential file is VTID that was basically entagged by
DBMS. The Op_Code is an attribute that represents tuple changes; ‘ins' when newly inserted, ‘del' when
deleted and ‘delp,’ and ‘inspy’ in series when a modification occurs. When views are to be updated, the
following four steps are basically performed. If several changes were happened in a tuple for some time, then
we do not need to consider all the records, only the first and the last one which is called the duplicate
elimination process. Next, the tuples are checked by the screen test that decides whether the changes are to be
transmitted to views or not in terms of view definition. After the tested tuples are sorted by the Op_Code of
VTID, condensed as one of those postscreening elimination procedure [17]. Then the results from the post
screening elimination, all the values of Op_Codes can be reduced into one of three forms: 'del', 'ins', and
‘mod'. The Global Update File(GUF) is finally generated to convey net changes to view sites, views are updated

at that time,

[Table 2-1 1 Postscreening Eliminations

Input of the Post-screening | Output of the Post-screening |

(ins or insm) + (del or delm) | ignored

(del or delm) + (ins or insm) | mod

ins + insm ins

del + delm del

2. General Notations

Gemeral notations:
Q : the set of site index, for i € Q= {1, 2,...,R}
B : the page size (bytes)
SF : the Semi join factor

® : the join operator

A3d A% A Differential Data Replicator in Distributed Environments 7

Si, SMi : the sites where Ri is located and the materialized view MV is located respectively.

Cyo, Ccomm : the input and output cost (ms/block) and the transmission rate (bits/sec) respectively

Hs g : Height of B tree at Sjsite

DR{ : the number of Ri tuples per page (= B/Wpg;)

PIDF Rj : the probability that s needed to join in DFg;
Distributed reduction notations:

Ui : the number of tuples in the differential file of Ri

Ui Ui, Uit : the number of tuples after the duplicate elimination procedure, the screen test,
postscreening elimination, and transmitted to the view site respectively.
URLUDIE] . the number of tuples in Ri and DIF;.
ul.r : the numbser of tuples in DJF] that are not participated in joining.
ac, as, ap :the duplicate climination factor, the screen factor for view predicate, and the postscreening
elimination factor
- Wins, Waet, Winog : the width of GUF tuples with operation code is insertion, deletion, and modification
Wri, WDjFj » Wyi - the width of Ri, DJFj, and materialized view MVi record respectively.

wg : the width of the B* tree.

3. Updating Join Views

One of the urgent problems of the replication server is how to reflect the changes of base table after
materializing views. When the tuples of base table are inserted(ins), modiﬁ§d(mod), or deleted(del), we should
determine whether these ﬁpls to be newly joined or not. |

Considering join operation we also make use of the Global Update File(GUF) [17] that has the following

schema: GUF(VTID,Au,0p-Code", {Site, VID}), where Op-CodeY indicates types of update to be done for

8 Wookey Lee - Jooseok Park - Sukho Kang HolEHIo|A X

each view in the list {Site, VID}; it will be one of three codes: 'ins', 'del’, or ‘mod". The values of Op-CodeY in
GUFaredcterminedbasedontheOp-Codeinthediﬁ’mnﬁalﬁleathhescreent&st. For tuples that pass the
screen test, 'ins' and 'de!’ in DF imply 'ins’ and ‘del’ in GUF: a delyy, insp pair in DF implies either 'ins' ,'del’,

~or 'mod’ in GUF because a modification of a base iuple can cause its deletion from a view, its 'ins'ertion to a
view, or a modification to a view that contain the tuple. Au is & when Op-Code" is 'del’ (since the remote view
needs only a VTID for a deletion), Ay, for u € Q when Op-Code is 'insi and the data attributes needed for
modification when Op-Code" is 'mod’; in case of modification we will assume that Au = { Ai = Value; }
where Ai is the name of the modified attribute and Value; is its new value.

Regarding join operation we consider only two kinds of tuple changes: ‘ins' and 'mod’. Because all the
other GUF tuples need not to be joined, these tuples are sent.direqtly to view sites where the pertinent
materialized views are stored. Then the transmitted tuples are applied to update materialized view. If the Op-
Code of GUF tuples is 'ins’; these tuples should be newly joined. In that place it will then be transmitted to the
related sites where the tables participating in join operations are located. After being joined with the table,
t)me tuples are appended to the relevant materialized views. When the attribute used in join predicate is
changed(in this case Op-Code is 'mod’), GUF tuples that contain these must be manipulated in the same way.

The relevant GUF tuples will be collected at the site where the join operation is made. If the join
operation is made by various GUF tuples sent from different sites, it is difficult to manage these tuples as one
table, since the sizes of these tuples may be different. Thus we prescribe a new architecture called DIF
(Differential Join File).b The schema of DJF is as follows: DJF (Sité_ID, VTID, Au, TS, Op_Code, Pointer)
where Site_ID : a unique identifier of the site where differential file is made, Au: the attributes that are used in
join predicate, TS means the timestamp, Op_Code is equivalent to the predicate of differential file's, and the
Pointer is that connects the atributes of differential tuples used in materialized views.

When we make a join operation using DI, the ways of join operation can be divided into the following
two cases: (1) join operation made by the foreign key (2) join operation made by the nonkey attributes. In both
cases DJF is created by sending the relevant differential tuples to sites where the pertinent relation is located.

Inmseof(l),DJijnnotbecmtedinasiteothenhanSj.WhennewtuplsminsenedinRi,sinoethe

A3d A2z A Differential Data Replicator in Distributed Environments

tuples joined with them exist in Sj by the referential integrity fule, DIFj can be created. In case the foreign key
of Ri (of course, it is the primary key of Rj) is updated, DJFj can be created also. But when new tuples are
inserted in Rj, DJF need not be created; since it will not trigger any new relationship with the tuples of Ri.
Even though there is a new insertion in both two tables simuitaneously, join can be done by using DJFj.

Next, comparisons should be made between the Join_Attribute (foreign key) of GUFi and the primary key
of DFR;. There are two strategies: if all the tuples sent from site i is matched with that of DFRj’, then there is
no need to search all base table of Rj, reducing the processing time needed to join. If there exist at least one
tuple of DJF that does not match with DFRj, then all the table of Rj cannot but be searched.

In case of (2) (Join By Non-key), we cannot use referential integrity rule, then DJF should be created at the
Si and S;j site. And we can't do join operation using DJF and differential file only, so we should search all the

tuples of Ri or Rj.

[figure 2-2] Join by the foreign key [figure 2-3] Join by non-key

4. Algorithms
We assume that table Ri is in site i and Rj in site j to be joined at site j for i # j and these tables are indexed
- by B+ trees. Here, for convenience' sake, we set Ap be a foreign key of table Ri at site i; it is a primary key of
table Rj. if T is a tuple, T-A denotes attribute A of T and the superscripted tuples TP and TB mean the

differential tuple and the base tuple respectively.

10 Wookey Lee - Jooseok Park - Sukho Kang HIOJEM|0)A KL

(1) The differential join algorithm
Stepl: Get T;P-Au where RT;< TP TS < tp
/* Get the tuples that have the same refresh times*/
Step2: Do Duplicate elimination and Screen test and postscreening elimination [17, 21].

Step3: Do algorithm DJF

Algorithm DJF
/* Generating Distributed Differential Join files */
Append file DDi
Do for VAu where u € £:
DD;VID T;P.viD
DDjAu T;P-Au
DPD;TS TP-1S
DD;Op_Code T;P-Op_Code

/* Remote reduction before sending */
If DD;-Op_Code =: del
Send DD;; to site SGyF
If DD;-Op_Code =: ins and 3 T;D-Ap = TjAl
Else stop;
Send DD tosite j
1 T;PP-Ag=: T;D-A1
then
join DD tuples to the differential file of Rj
Save it as Templ
Else
join DD tuples to the base relation Rj

Save it as Temp1

A3d A23 - A Differential Data Replicator in Distributed Environments 1

Union Templ and Temp2
Save it as Jtemp_i_j
Send Jtemp_i_j to site SgyF
1 T;PD-Op_Code =: mod AND T;PD.Ap : TP-A,

then

send DDj 1o site SgyuF

Else
Join DDj with differential file of Rj
Save it as Temp3
Send Temp3 to the view site

Endif

End.
III. Examples

Some examples as follows will be applied the algorithm DJF_JOIN; EMP(VTID, ENO, ENAME, JNO) and
PROJECT(VTID, JNO, INAME, BUDGET) where ENO means the Employee number, ENAME is the
Employee name, JNO: Project number, INAME: Project name, BUDGE’lfz Project budget. VTID is a primary
key and JNO is a foreign key. Here we assume that relation EMP is located at sitel and relation PROJECT is
located at site 2. A materialized view MATL_VIEW]1 is assumed to be located at site 3 and is defined as
follows:

CREATE VIEW MATL_VIEWI1 AS
SELECT EMP.ENAME PROJECT.JNAME, PROJECT.BUDGET
FROM EMP, PROJECT WHERE EMP.JNO = PROJECT.JNO and EMP.AGE > 30

REFRESHCED BY 7DAYS;

12 Wookey Lee - Jooseok Park - Sukho Kang Hlo|EM|O) A Hd

[Table 3-1) EMP, PROJECT tables and materialized view MATL_VIEW1

EMP

VIDD1 | ENO| ENAME | AGE| JNO
1 El LEE 31 J1
2 E2 KIM 25 12
3 E3 PARK 36 2
4 E4 YUN 43 13
5 E5 BAE 29 15
6 E6 SIN 37 13
7 E7 HAN 28)y

PROJECT
VTID2 INO INAME BUDGET
101 J1 CAD 100
102 12 CaM | 300
103 133 OR 150
104 4 LP 240
105 J5 MRP 450
MATL VIEWI

ENAME JNAME | BUDGET

LEE CAD 100

PARK CAM 300

YUN _OR 150

SIN CAM 300

EMP, PROJECT, MATL_VIEW1 are shown in [table 1). Tables 2 to 4 show that the results of duplicate -

elimination and screen test applied to the differential file of EMP.

A3d A2%

A Differential Data Replicator in Distributed Environments

13

{Table 3-2] Differential file of EMP

vip1 | ENo | ENAME| AGE| INo | Op Code
8 E5 ciol | 35| m 'ing’
3 E3 PARK | 36| n ‘delgy’
3 E3 PARK | 36| ‘insgy’
5 E5 BAE 29 | 15 ‘dely’
5 ES BAE | 20| 15 ‘ins
5 ES BAE | 29| u ‘del’

1 El LEE 31| n ‘del'-

[Table 3-3] Differential file of EMP after duplicate elimination

VIIDl | ENO | ENAME | AGE| INO Op_Code
3 ES CHOI 35 ¥4 'ins’
3 E3 PARK 36 2 'del, !
3 E3 PARK 36 J4 ‘ins’
5 ES BAE 29 15 _‘del)!
5 ES BAE 29 4 del'

1 El LEE 31 n ‘del'

{Table 3-41 Differential file of EMP after the screen test
VIIDI | ENO ENAME | AGE| JNO Op_Code
8 ES CHOI 35 14 'ing’
3 E3 PARK 36 12 'del !
3 E3 PARK 36 T4 'insgy’
1 El LEE 31 n del

(Table 3-5] Differential file of EMP afler postscreening elimination

VTID1 ENO ENAME JNO Op_Code
8 E5 CHOI J4 'ins’
3 E3 PARK J4 ‘mod’
1 El ' LEE 11 ‘del’

14

Wookey Lee - Jooseok Park - Sukho Kang HIOJEMO)A XY

Afiter applying the above procedures, GUF tuples created are as follows: (8; E5; CHOIL J4; 'ins";
{S3,MATL_VIEW1}), (3; J4; 'mod'; {S3,MATL_VIEW1}), (1; 'del'; {S3, MATL_VIEW1}). For the tuple of

which the Op_Code is 'del', it will be sent to site 3 directly. DIF created is shown in ftable 6].

(Table 3-6) DJF created at site 2 _
SITE. ID VIID1 | - Au ENAME
S1 8 3 CHOI
S1 ¥4 PARK

The procedure which reflects the above changes to MATL_VIEW1 is as follows:

1. Among GUF tuples of EMP, send the GUF tuples of which the Op_Code is ‘del’ to site3 and delete all
the tuples of MATL_VIEW1 that have the same VTID values.

{Table 3-71 updated materialized view by GUF

VTID1 VTID2 ENAME | INAME | BUDGET
102 PARK CAM 300

4 103 YUN OR 150

6 103 SIN CAM 300

2. Send GUF tuples of EMP of which the Op_Code is ‘ins’ andﬂ the tuples of which the foreign key is
modified to site 2, then make DJF.

3. Compare Join_Attribuie of DJF with primary key of differential file of PROJECT. If two values are the
same then make a join operation and apply the screen test to these tuples. Send them to the site where

MATL_VIEW1 is located and append them to MATL_VIEWL. If not, search table PROJECT and do the same
operation to the whole table.

A3¥ A2E A Differential Data Replicator in Distributed Environments 15

(Table 3-8] join operation using DJF

Site id | VIID1]| JNO | ENAME
s1 8 1 CHOI
s1 3 7! PARK
®
VIID2|{ IJNO | INAME| BUDGET
104 1 LP 240

[Table 3-9) final MATL VIEW1

VIDI vip2 | ENAME | INAME | BUDGET
4 103 YUN OR 150
6 103 SIN CAM 300
8 104 CHOI LP 240
3 104 PARK | LP 240

IV. Performance Analysis

1. Cost functions
In this section, we are to compare algorithm DJF_JOIN with semijoin algorithm. In comparison, we
considered communication costs and I/O costs and assumed that Ri and Rj have a clustered index on

join_attribute (Au).

16 Wookey Lee - Jooseok Park - Sukho Kang HlolERI0|A XY

1.1 Applying the Yao’s cost function

Yao suggested a cost function that for accessing N méords'mdonﬂy distributed in a file of P records stored in
K pages, a formula for the expected ‘oplimal number of page accesses is given in [23]:

f(N,P,K) =m*{1-Tl*(a-v/m-1+1¥n-1+1)].
This formula assumes that the scheduling of page accesses is optimal, that is, the same page is not accessed

more than once.

1.2 Cost of the DJF scheme
In order to establish the oost functions, we first determine the number of tuples that pass through each stage
of the procedure.
Ui = Ui.ins + Ui.del + Ui.delm + Ui.insm (where Ui.delm = Ui.insm)
Ui® = USi.ins + Ui.del + UCi.delm + USi.insm = Ui.ins + Ui.del + @ e(Ui.delm + Ui.insm)
Ui® = USi.ins + USi.del + USi.delm + USi.insm = asUSiins+ asUSi.del + ¢ sUSi.delm + @ sUSiinsm
Uit = Uli.ins + Uli.del + Ulimod = @ pUSi.ins + apUSi.del + @ p(USi.insm + USi.delm)

The total cost in algorithm DJF_JOIN can be divided by the site Si, Sj and Sm

(Table 4-1] Costs by algorithm RF: (a) Cost in site Si (b) Cost in site Sj (c) Cost in site Sm.

(a) Cost in site Si
title expressions cost function
CIo1 reading Ui tuples from DFp; CVOW; ins *+ Ui do1 + Ui delm * Vi insm)WR/R
Clo2 Cost of sorting Ui® tuples Cun*2*UisWpm
CCOM1 transmitting GUF to Sjand SMi | 8(UY incWins + Ul detWael *+ Ul madWmod)
/Conmm

Cost in Si = CIO1 + CIO2 + CCOM1

A3W/ A2z A Differential Data Replicator in Distributed Environments 17
(b) Cost in site Sj
title expressions cost function
Clo3 accessing the BT tree at the | CLO[MHp gv;- 1)+ @sNr, @ N Wg/g, UY]
viéw site
CIO4 Cost of updating the data in the | CL/O2 * f(@sNr, @sNrWy/g, U
view table
Cost in Si = CIO3 + CIO4
(c) Cost in site Sm
title expressions | cost function
CIO5 reading Uj tuples in DFp; Cri0Wi ing * Ui det * Vi detm *+ Ui insm)WR/R
CIO6 Cost of sorting U;5 tuples Cua*2*USWem
CI07 Cost of reading JDFj Cya * VP'BwWIDF/B
CI08 sorting DIFj by join attribute | Cyn*2*U'PHWmm
CI09 Cost of reading Rj tuples for join | Py ri*{Cr/ol@HR i - 1) + KUN, URiwg;m,
operation with U-T ui-fy)
ccoM2 Cost of sending joined tuple to | $*U'PF*Wmvi /Ccomm + 8(UjtdeIWdel + Ujtmod
SMi + Cost of sending the | Wmod)/Ccomm
change of Relation Rj to SMi
Cost in Sj = C105 + CIO6 + CIO7 + CIO8 + CIO9 + CCOM2

2.2 The cost of the semijoin

If algorthm DJF is not used, we can use semi-join to maintain materialized view after join operation. When we

use semijoin, the algorithm and cost function is as follows.

18 Wookey Lee + Jooseok Park - Sukho Kang HjO|ERH|O)|A XY

(1) semi-join algorithm
Stepl: Send the attribute of Ri which is used in join predicate to'site Sj where Rj is located. (where size of Ri
is greater than that of Rj)
Step2: In Sj, send the tuples of Rj, that are matched with the attributes of Ri sent from Si, to Si.
Step3: In Si, join Ri with the tuple sent from sj and send them to the sites where materialized views are

located.

(2)The Cost fonction
Total cost by the algorithm semi-join can be divided by the site Si, Sj. It's as follows. The total cost is SIO1

+ 8102 + SIO3 + SIO4 + S105 + SCOM1 + SCOM2 + SCOM3.

{ Table 4-2] Costs by algorithm semi-join; () Cost in site Si (b) Cost in site Sj

(a) Cost in site Si
Title expressions cost function
SIO1 Cost of reading join attribute | Cyn[(B_Sj- 1) + URiwppm)
index of Ri
SI02 Cost of reading the tuples of Rj | $*URIWR/BCcomm
sent from sj
SIo3 Cost of reading Ri to join with | Cyn*{@HB_S;j - 1) +URiWR; m)
the tuples of Rj
SCOM2 Cost of sending joined tuple to | 8* & FURWW, i /Coomm

the view sites

COST in Si = SIO1 + SIO2 + SCOM1 + SCOM2

A Differential Data Replicator in Distributed Environments

A3A A2z 19
(b) Cost in site Sj
title expressions cost function
SI04 Cost of reading index of Ri from | CHO*URiwg 5
Si
SIOS Cost of reading R CUO[HR_g; - 1) + KUN, URiwp; m, SPURi]
SCOM3 Cost of sending the tuples that | 8*SF*URI*WL/Cormm
maich the attribute of Ri
COST in Sj = SIO3 + SIO4 + SCOM3

3. PERFORMANCE Analysis

The following values are assigned to the parameters for the analysis. The communication speed varied

between 10,000bps and 10,000,000bps. The screening factors(@,) are varied between 0.01 and 1.0; Here a,=

1.0 means that there is no screening and @, = 0.0 is 100% screening that means no tuple will be sent to other

sites. We assumed that the size of a page(B) is 4000 bytes, the width of experimental tables(WRi and WR;) will

be 200 bytes, the size of B+ tree{WB) is 8 bytes, input and output cost (CI/O) are 25 ms/lock, and the sizes of

DIF that inserted tuples (Wins) will be 200 bytes, deleted tuples (Wdel) 8 bytes, and the updated tuples

(Wmeod) 100 bytes respectively.

Assuming the above values and varying numbers of differential tuples, we can calculate the total cost of

each algorithm and compared the cost ratios. The results are summarized in figure 5, figure 6, and table 5. In

figure 5 and 6, the tuple sizes of each relations are assumed to be 1,000,000 and 100,000 and the

communication rate to be 1Mbps.

20 Wookey Lee - Jooseok Park - Sukho Kang HIO|EM{O|A XY

Varying the tuple numbers of differential files, we calculated the cost ratio (semijoin to algorithm DJF).
The ratio is increased as the transmission rate agd»screen Ifactors are decreased. In Figure 5 we can get a
different result with a screening ratio = 0.001, it means that the DJF scheme will not show eﬂ'ecﬁve results for
the tuples 10 be transferred is extremely small. Figure 6 shows that the cost ratio is increasing as the_ number
of differential tuples decreases when the transmission rate and screen factors are fixed. Here URI means the

pumber of tuples in Ri and Ui Number of tuptes in differential tuples of Ri.

250

&
®
.

——5F=0.001

TotdP? —.—5F=0.01
Cost —h~SF=0.1
—6—5F=0.5

—¥~—SF=0.7
10k 50k 100k 500k 1IN 10M
Transmission Ratio
[Figure 4-1] Total cost ratio I (Semijoin/DJF_JOIN)
800
4
700 \
600
500 ——10k
Total —— 100k
:08400 > ——ce——ee———y |8 500k
até%o _ —¥— 1y
. == 10M
200.
—.‘\v—z; ! ! y -
100 LEES e —— "
0 1 Y 3 i 1 L '
0.01 0.03 0.05 0.1 0.3 0.5 0.7 0.9

Screen Factor

[Figure 4-2] Total cost ratio II (Semijoin/DJF_JOIN)

A3 A2z

A Differential Data Replicator in Distributed Environments

21

[Table 4-3 1 The portion of communication cost in total cost(%)

SF | o1 0.4
Algorithm
Semijoin 242 53.6
Ui: 10k Uj: 1k 0.72 0.88
DIF_JOIN
Ui : 100k Uj : 10k 0.94 138
Ui : 500k Uj : 50k 175 3.54

Varying the number of differential tuples and transmission rate, we summarized the total cost ratio between

semijoin algorithm and algorithm DJF. When transmission rate and screen factor decreases, algorithm DJF is

much better than semijoin. The share of the transmission cost in total cost is shown in table 6. It shows that

algorithm DJF takes a much smaller share than that of semijoin, even if we maintain large differential tuples

(up to half of a base table). It also indicates that the transmission cost is decreased when when we usc

algorithm DJF_JOIN. Table 7 shows that the /O cost ratio also affected by the screen factors and the number

of tuples transferred.

[Table 4-4] Total transmission cost ratio (Semijoin/DJF_JOIN)

the number of
f tuples |Ui: 10k Ui : 100k
s.f. Uj:k Uj: 10k
0.1 925.1 89.4
0.4 821.7 81.3

Wookey Lee + Jooseok Park - Sukho Kang

HI0|EMIO|A X

{ Table 4-5) Total VO cost ratio (Semiioin/DJF JOIN)

the number of
d.f. tuples Ui 10k Ui : 100k
sf. Uj: 1k Uj: 10k
0.1 22.1 3.38
0.4 7.38 1.02

V. Summaries and further researches

In this paper a replication server scheme with the architectures is suggested with an efficient performance

results. The contribution of this scheme is not only to minimize the number of base relation locks in distributed

database tables but also to reduce the remote transmission amount remarkably. The differential files derived

from the active log made the scheme reduce the number of base relation locks. The amount of transportation

between relevant sites could be curtailed by the tuple reduction procedure such as duplicate elimination, screen

test, and postscreening elimination.

The performance tests show that the total cost of this scheme is much smaller than the base table one i.c.,

- the semi-join in a general distributed environment. We want to examine the performance of this scheme

comparing with other ones such as ORACLE’s Symmetric Replicator, Sybase’s Replication Server, IBM’s

Data Propagator Relational and Nonrelational, Praxis’ Omnireplicator, Platinum’s Infopump, and CA Ingres’

Replicator, etc.

A3A A2z A Differential Data Replicator in Distributed Environments 23

References

[1} Anat Gafni, K. V. Bapa Rao, “A Time based Distributed Optimistic Recovery and Concurrency Control

Engines

ring, 1992, pp. 498-505.

onference on Datg

[2] Blakeley, J. A., Larson, P. and Tompa, F. W. ,"Efficiently updating materialized views," Proceedings of
ACM:SIGMOD Conference Management of Data, Washington, DC, May 1986.

[3] Cheung, S. Y., Ammar, M. H., and Ahamad, M., "The Grid Protocol : A ngh Performance Scheme for
Maintaining Replicated Data,” IEEE Transactions on Knowledge and Data Engincering, vol.4, nos,
Dec.1992.

[4) Davison, S. B., Garcia-Molina, H., and Skeen, D., "Consistency in partitioned networks," ACM

Compututing Survey, vol.17, No.3, Sep. 1985.
[5] Gilfford, D. K., "Weighted Voting for Replicated data”, Proceedings of the 7th Symposium on Operating
Svstems Principles, 1979.

[6] Goldring, R. "A Discussion of Relational Database Replication Technology,” InfoDB, Spring, 1994,

[7] Gorelik, A., Wang, Y. and Deppe, M. "Sybase Replication Server" Proceedings of ACM-SIGMOD Int.
Conf. Management of Data, May 1994.

[8] Hanson, E. R, " A Performance analysis of view materialization stratigies, " Proceedings of ACM-
SIGMOD Conf. Management of Data, May 1987,

[9] Horowitz, S. and Teitelbaum, T., "Generating editing environment based on relations and attributes,* ACM

ystems, vol. 8, oct. 1986.

[10] Jajodia, S. and D. Mutchler, "A Hybrid Replica Control Algorithm Combining Static and Dynamic

gineering, vol.1,n0.4,Dec.1989.

[11] Kahler,B. and Risnes,O.,"Extending logging for database snapshot refresh,” Proceedings of Very Large
Data Bases. Brighton England, Sept.1987, pp.389-398.

[12] Kumar M., "Performance Analysis of a Hierarchical Quorum Consensus Algorithm for Replicated

Objects™ Proceedings of Distributed Computing System, 1990.

24 Wookey Lee * Jooseok Park - Sukho Kang HIO|EMIOIA XY

{13} Lindsay, B. G., Hass, L. ,Mohan C., Pirahesh H., and Wilms H., "A snapshot differential refrésh
algorithm," Proceedings of ACM-SIGMOD, June 1986, pp.53-60
[14] Ozsu, M. T., and Valduriez, P., Principles of Distributed Database Systems, Prentice-Hall, 1991,
{15] Roussopoulos, N. and Kang, H. "Principles and Techniques in the design of ADMS+/-, * IEEE Computer,
Dec. 1986. |
{16] Segev, A. and Fang, W., "Optimal update policies for distributed materialized views,” Department of
Computer Science Reseach, Lawrence Berkeley Lab.. Technical Report. LBL-26104, 1988.
[17] Segev, A. and Park, J., "Updating Distributed Materialized Views,” IEEE Transactions on Knowledge and
Data Engineeging, Vol.1, No.2, June 1989.
{18] Shmueli, O., and Itai, A., "Maintenance of views,” Proceedings of ACM-SIGMOD, Boston, MA, 1984.
[19) The, L., " Distribute Data Without Choking The Net” Qammm:_; January, 1994.
{20] Tompa,F.W. and Blakeley,J.A., "Maintaining Materialized Views without Accessing Base Data,”
Information Systems, Vol. 13, 1988.
[21) Wookey Lee, S. Kang, and J. Park, “Refreshing Distributed Multiple Views and Replicas,” Joyrnal of the
Korean OR/MS Society, Vol. 21, No. 1, April 1996, pp. 31- 50.
[22] Wookey Lee, S. Kang, and J. Park, “Replication Server Scheme in Distributed Database Systems,”
Mgs_gﬂhg_mgn&m Hong Kong, Vol. 3, No. 1, June, 1996, pp. 1275~ 1281.
{23] Yao, S. B., * Approximating block accesses in database organizations, * Communications of the ACM,

Vol. 20, April 1977.

