• Title/Summary/Keyword: Distributed control

Search Result 3,354, Processing Time 0.039 seconds

Integrated Voltage/Var control based on Distributed Load Modeling with Distributed Generation in Distribution System (분산전원이 설치 된 배전 계통의 분포부하를 이용한 IVVC알고리즘)

  • Kim, Young-In;Lim, Il-Hyung;Choe, Myeon-Song;Lee, Seung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.95_96
    • /
    • 2009
  • In this paper, a new algorithm of Integrated Volt/Var Control (IVVC) is proposed using Volt/Var control for the Distribution Automation System (DAS) based on the modeling of the distributed load and the distributed current. In the proposed, the load flow based on the modeling of the distributed load with Distributed Generation and the distributed current are estimated from constants of four terminals using the measurement of the current and power factor from a Feeder Remote Terminal Unit (FRTU). For Integrated Volt/Var Control (IVVC), the gradient method is applied to find optimal solution for tap and capacity control of OLTC (On-Load Tap Changers), SVR (Step Voltage Regulator), and SC (Shunt Condenser). What is more Volt/Var control method is proposed using moving the tie switch as well as IVVC algorithm using power utility control. In the case studies, the estimation and simulation network have been testified in Matlab Simulink.

  • PDF

DEVELOPMENT OF TIMING ANALYSIS TOOL FOR DISTRIBUTED REAL-TIME CONTROL SYSTEM

  • Choi, J.B.;Shin, M.S.;M, Sun-Woo
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.269-276
    • /
    • 2004
  • There has been considerable activity in recent years in developing timing analysis algorithms for distributed real-time control systems. However, it is difficult for control engineers to analyze the timing behavior of distributed real-time control systems because the algorithms was developed in a software engineer's position and the calculation of the algorithm is very complex. Therefore, there is a need to develop a timing analysis tool, which can handle the calculation complexity of the timing analysis algorithms in order to help control engineers easily analyze or develop the distributed real-time control systems. In this paper, an interactive timing analysis tool, called RAT (Response-time Analysis Tool), is introduced. RAT can perform the schedulability analysis for development of distributed real-time control systems. The schedulability analysis can verify whether all real-time tasks and messages in a system will be completed by their deadlines in the system design phase. Furthermore, from the viewpoint of end-to-end scheduling, RAT can perform the schedulability analysis for series of tasks and messages in a precedence relationship.

Integrated Volt/Var Control Algorithm based on the Distributed Load Modeling of Distribution Network (배전계통의 분포 부하 모델링을 통한 최적화 IVVC 알고리즘)

  • Kim, Young-In;Lim, Il-Hyung;Choi, Myeon-Song;Lee, Seung-Jae;Lee, Sung-Woo;Kwon, Sung-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1463-1471
    • /
    • 2009
  • In this paper, a new algorithm of Integrated Volt/Var Control (IVVC) is proposed using Volt/Var control for the Distribution Automation System (DAS) based on the modeling of the distributed load and the distributed current. In the proposed, the load flow based on the modeling of the distributed load and the distributed current are estimated from constants of four terminals using the measurement of the current and power factor from a Feeder Remote Terminal Unit (FRTU). For Integrated Volt/Var Control (IVVC), the gradient method is applied to find optimal solution for tap and capacity control of OLTC (On-Load Tap Changers), SVR (Step Voltage Regulator), and SC (Shunt Condenser). What is more Volt/Var control method is proposed using moving the tie switch as well as IVVC algorithm using power utility control. In the case studies, the estimation and simulation network have been testified in Matlab Simulink.

Methods for an application of real-time network control on distributed storage facilities (분산형 저류시설의 실시간 네트워크 제어기술 적용시 고려 사항)

  • Beak, Hyunwook;Ryu, Jaena;Oh, Jeill;Kim, Tae-Hyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.711-721
    • /
    • 2013
  • Optimal operation of a combined sewer network with distributed storage facilities aims to use the whole retention capacity of all reservoirs efficiently before overflows take place somewhere in the considered network system. An efficient real-time network control (RTNC) strategy has been emerging as an attractive approach for reducing substantially the overflows from a sewer network compared to the conventional fixed or manually adjusted gate setting method, but the related concrete framework for RTC development has not been throughly introduced so far. The main goal of this study is to give a detailed description of the RTNC systems via reviewing several guidelines published abroad, and finally to suggest methods for the proper application of RTNC on distributed storage facilities. Especially, this study is focused on emphasizing the importance of hierarchical structure of RTNC system that consists of three control layers (management, global control and local control). Further, with regard to the global control layer which is responsible for the central overall network control, the wide-ranging details of two components (adaption and optimization layers) are also presented. This study can provide the valuable basis for the RTNC implementation in the particular sewer network with distributed multiple storage facilities.

Scheduling algirithm of data sampling times in the real-time distributed control systems

  • Hong, Seung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.112-117
    • /
    • 1992
  • The Real-time Distributed Control Systems(RDCS) consist of several distributed control processes which share a network medium to exchange their data. Performance of feedback control loops in the RDCS is subject to the network-induced delays from sensor to controller and from controller to actuator. The network-induced delays are directly dependent upon the data sampling times of the control components which share a network medium. In this study, a scheduling algorithm of determining data sampling times is developed using the window concept, where the sampling data from the control components dynamically share a limited number of windows.

  • PDF

A Distributed Power Optimization Method for CDMA Cellular Mobile Systems Using an Adaptive Search Scheme

  • Lee, Young-Dae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1982-1985
    • /
    • 2003
  • Future cellular networks will mainly be driven by, high quality channels, high band with utilization, low power consumption and efficient network management. For a given channel allocation, the capacity and quality of communication of cellular radio systems using CDMA(Code Division Multiple Access) can be increased by using a transmitter power control scheme to combat the near-far problem. Centralized power control schemes or distributed ones to maximize the minimum signal-to-interference in each user of CDMA wireless network have been investigated. This paper has proposed a distributed power control algorithm, which employs an adaptive search scheme, in order to solve quickly the linear systems of equations for power update in CDMA cellular radio systems. The simulation results show that the proposed scheme has faster convergence rate than the typical bang-bang type of distributed power control algorithm, which has been much used as a reference algorithm in IS-95A and W-CDMA communication network.

  • PDF

Internet-based Distributed Control Networks. (인터넷을 이용한 분산제어 구현을 위한 네트워킹)

  • 송기원;최기상;최기흥
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.582-585
    • /
    • 2001
  • Requirements for device networks differ greatly from those of data(business) networks. Consequently, any control network technology which uses a fieldbus protocol is, in general, different from IP network protocol TCP/IP. One needs to integrate fieldbus protocol and TCP/IP to realize distributed control over IP network or internet. This paper suggests a basic concept that can be applied to distributed control over IP network or internet. Specifically, LonWorks technology that uses LonTalk protocol is reviewed as device network. LonWorks technology provides networked intelligent I/O and controllers which make it a powerful, expandable solution. It is also addressed that many hardwired PLCs can be replaced by LonWorks devices. Connecting these remote LonWorks networks to the Internet can provide a powerful, integrated, distributed control system.

  • PDF

Optimal Control of Distributed Parameter Systems Via Fast WALSH Transform (고속 WALSH 변환에 의한 분포정수계의 최적제어)

  • Kim, Tai-Hoon;Kim, Jin-Tae;Lee, Seung;Ahn, Doo-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.10
    • /
    • pp.464-472
    • /
    • 2001
  • This study uses distributed parameter systems as the spatial discretization technique, modelling in lumped parameter systems, and applies fast WALSH transform and the Picard's iteration method to high order partial differential equations and matrix partial differential equations. This thesis presents a new algorithm which usefully exercises the optimal control in the distributed parameter systems. In exercising optimal control of distributed parameter systems, excellent consequences are found without using the existing decentralized control or hierarchical control method. This study will help apply to linear time-varying systems and non-linear systems. Further research on algorithm will be required to solve the problems of convergence in case of numerous applicable intervals.

  • PDF

Agent-based Collaborative Simulation Architecture for Distributed Manufacturing Systems (분산 생산 시스템을 위한 에이전트 기반의 협업 시뮬레이션 체계)

  • Cha Yeong Pil;Jeong Mu Yeong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.808-813
    • /
    • 2003
  • Maintaining agility and responsiveness m designing and manufacturing activities are the key issues for manufacturing companies to cope with global competition. Distributed design and control systems are regarded as an efficient solution for agility and responsiveness. However, distributed nature of a manufacturing system complicates production activities such as design, simulation, scheduling, and execution control. Especially, existing simulation systems have limited external integration capabilities, which make it difficult to implement complex control mechanisms for the distributed manufacturing systems. Moreover, integration and coupling of heterogeneous components and models are commonly required for the simulation of complex distributed systems. In this paper, a collaborative and adaptive simulation architecture is proposed as an open framework for simulation and analysis of the distributed manufacturing enterprises. By incorporating agents with their distributed characteristics of autonomy, intelligence, and goal-driven behavior, the proposed agent-based simulation architecture can be easily adapted to support the agile and distributed manufacturing systems. The architecture supports the coordination and cooperation relations, and provides a communication middleware among the participants in simulation.

  • PDF

Process Control Using Fieldbus (필드버스를 이용한 공정제어)

  • 김영효;한헌수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.113-117
    • /
    • 2003
  • In the industrial field nowadays the information that needs to be handled arc increasing and requires faster speed in contrast with PLC(Programmable Logic Controller) or DCS(Distributed Control System) based control systems these days. The work environment these days are mostly based on PC, so the control systems are wanted in PC. At Fieldbus used automated systems performing distributed process control by PC performs and combines into one system in order to maximize the increase of productivity, lower the expense, planning constructing and maintaining the reliance of automation. These latest automation systems unites process, makes distributed control process able, and can control and supervise at remote PC.

  • PDF