• Title/Summary/Keyword: Distributed Wireless Systems

Search Result 265, Processing Time 0.025 seconds

Development of 50W High Quality Factor Printed Circuit Board Coils for a 6.78MHz, 60cm Air-gap Wireless Power Transfer System (6.78MHz, 거리 60cm, 50W급 무선 전력 전송 시스템용 High Quality Factor PCB 코일 개발)

  • Lee, Seung-Hwan;Yi, Kyung-Pyo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.468-479
    • /
    • 2016
  • In order to supply power to online monitoring systems that are attached to high voltage catenary or overhead wires, a wireless power transfer system is required that is able to transmit power over the insulation gap. Such wireless power transfer systems have transmitter and receiver coils that have diameters of over 10cm. This paper focused on an investigation of the sources of loss in the coils when the coils are fabricated using printed circuit board technology. Using finite element simulation results, it has been shown that the dielectric loss in the substrate was the dominant source of the total loss. It has been demonstrated that the selection of a proper dielectric material was the most critical factor in reducing the loss. For further reduction of the loss, the distributed tuning capacitor method and the slotting of the inter-turn spaces have been proposed. For the evaluation of the proposed methods, four coils have been fabricated and their equivalent series resistances and quality factors were measured. Measured quality factors were greater than 300, which means that these devices will be helpful in achieving high coil-to-coil efficiency.

Design and Implementation of a Server System for Integrating Wired and Wireless Web Services (유무선 통합 웹 서비스를 위한 서버 시스템의 설계 및 구현)

  • 배성환;이종언;차시호;김규호
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.2
    • /
    • pp.115-123
    • /
    • 2004
  • Since internet and XML has come out, Web Services are regarded as a new paradigm of next generation's IT are becoming a leading technology to integrate the distributed applications on internet using XML based Platforms and distributed computing based on component technologies independent on implementing languages. Nowadays internet is generally used and the use of wireless internet is rapidly rising. The quantities of contents on the web-sites to manage and maintain are getting larger according to these trends and the update cycles are getting shorter It is necessary to solve these Problems that developing the systems which can effectively generate, maintain and manage the contents on the web-sites. In the paper, a system which can integrates wired and wireless services is designed and implemented using the technologies like XML based components, JWSDP, Wireless Server Side Script, WML editor and etc.,

  • PDF

Improving Data Accuracy Using Proactive Correlated Fuzzy System in Wireless Sensor Networks

  • Barakkath Nisha, U;Uma Maheswari, N;Venkatesh, R;Yasir Abdullah, R
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3515-3538
    • /
    • 2015
  • Data accuracy can be increased by detecting and removing the incorrect data generated in wireless sensor networks. By increasing the data accuracy, network lifetime can be increased parallel. Network lifetime or operational time is the time during which WSN is able to fulfill its tasks by using microcontroller with on-chip memory radio transceivers, albeit distributed sensor nodes send summary of their data to their cluster heads, which reduce energy consumption gradually. In this paper a powerful algorithm using proactive fuzzy system is proposed and it is a mixture of fuzzy logic with comparative correlation techniques that ensure high data accuracy by detecting incorrect data in distributed wireless sensor networks. This proposed system is implemented in two phases there, the first phase creates input space partitioning by using robust fuzzy c means clustering and the second phase detects incorrect data and removes it completely. Experimental result makes transparent of combined correlated fuzzy system (CCFS) which detects faulty readings with greater accuracy (99.21%) than the existing one (98.33%) along with low false alarm rate.

Utility Bounds of Joint Congestion and Medium Access Control for CSMA based Wireless Networks

  • Wang, Tao;Yao, Zheng;Zhang, Baoxian;Li, Cheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.193-214
    • /
    • 2017
  • In this paper, we study the problem of network utility maximization in a CSMA based multi-hop wireless network. Existing work in this aspect typically adopted continuous time Markov model for performance modelling, which fails to consider the channel conflict impact in actual CSMA networks. To maximize the utility of a CSMA based wireless network with channel conflict, in this paper, we first model its weighted network capacity (i.e., network capacity weighted by link queue length) and then propose a distributed link scheduling algorithm, called CSMA based Maximal-Weight Scheduling (C-MWS), to maximize the weighted network capacity. We derive the upper and lower bounds of network utility based on C-MWS. The derived bounds can help us to tune the C-MWS parameters for C-MWS to work in a distributed wireless network. Simulation results show that the joint optimization based on C-MWS can achieve near-optimal network utility when appropriate algorithm parameters are chosen and also show that the derived utility upper bound is very tight.

The performance of MIMO cooperative communication systems using the relay with multi-antennas and DSTC

  • Chan Kyu Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.14-23
    • /
    • 2023
  • The cooperative communication systems using MIMO(multiple input multiple-output) relay are known as one of the most promising techniques to improve the performance and coverage of wireless communication systems. In this paper, we propose the cooperative communication systems using the relay with multi-antennas and DSTC(distributed space time coding) for decode-and-forward protocol. As using DSTC for DF(decode-and-forward), we can minimize the risk of error propagation at the wireless system using relay system. Also, the MIMO channel cab be formed by multi-antenna and DSTC at the MS(mobile station)-RS(relay station) and at the RS-BS(base station).Therefore, obtaining truly constructive the MIMO diversity and cooperative diversity gain from the proposed approach, the performance of system can be more improved than one of conventional system (relay with single antenna, no relay). The improvement in bit error rate is investigated through numerical analysis of the cooperative communication system with the proposed approach.

A Secure Network for Mobile Wireless Service

  • Peng, Kun
    • Journal of Information Processing Systems
    • /
    • v.9 no.2
    • /
    • pp.247-258
    • /
    • 2013
  • A new secure network communication technique that has been designed for mobile wireless services, is presented in this paper. Its network services are mobile, distributed, seamless, and secure. We focus on the security of the scheme and achieve anonymity and reliability by using cryptographic techniques like blind signature and the electronic coin. The question we address in this paper is, "What is the best way to protect the privacy and anonymity of users of mobile wireless networks, especially in practical applications like e-commerce?" The new scheme is a flexible solution that answers this question. It efficiently protects user's privacy and anonymity in mobile wireless networks and supports various applications. It is employed to implement a secure e-auction as an example, in order to show its advantages in practical network applications.

Improvement of IoT sensor data loss rate of wireless network-based smart factory management system

  • Tae-Hyung Kim;Young-Gon, Kim
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.173-181
    • /
    • 2023
  • Data collection is an essential element in the construction and operation of a smart factory. The quality of data collection is greatly influenced by network conditions, and existing wireless network systems for IoT inevitably lose data due to wireless signal strength. This data loss has contributed to increased system instability due to misinformation based on incorrect data. In this study, I designed a distributed MQTT IoT smart sensor and gateway structure that supports wireless multicasting for smooth sensor data collection. Through this, it was possible to derive significant results in the service latency and data loss rate of packets even in a wireless environment, unlike the MQTT QoS-based system. Therefore, through this study, it will be possible to implement a data collection management system optimized for the domestic smart factory manufacturing environment that can prevent data loss and delay due to abnormal data generation and minimize the input of management personnel.

Experimental validation of a multi-level damage localization technique with distributed computation

  • Yan, Guirong;Guo, Weijun;Dyke, Shirley J.;Hackmann, Gregory;Lu, Chenyang
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.561-578
    • /
    • 2010
  • This study proposes a multi-level damage localization strategy to achieve an effective damage detection system for civil infrastructure systems based on wireless sensors. The proposed system is designed for use of distributed computation in a wireless sensor network (WSN). Modal identification is achieved using the frequency-domain decomposition (FDD) method and the peak-picking technique. The ASH (angle-between-string-and-horizon) and AS (axial strain) flexibility-based methods are employed for identifying and localizing damage. Fundamentally, the multi-level damage localization strategy does not activate all of the sensor nodes in the network at once. Instead, relatively few sensors are used to perform coarse-grained damage localization; if damage is detected, only those sensors in the potentially damaged regions are incrementally added to the network to perform finer-grained damage localization. In this way, many nodes are able to remain asleep for part or all of the multi-level interrogations, and thus the total energy cost is reduced considerably. In addition, a novel distributed computing strategy is also proposed to reduce the energy consumed in a sensor node, which distributes modal identification and damage detection tasks across a WSN and only allows small amount of useful intermediate results to be transmitted wirelessly. Computations are first performed on each leaf node independently, and the aggregated information is transmitted to one cluster head in each cluster. A second stage of computations are performed on each cluster head, and the identified operational deflection shapes and natural frequencies are transmitted to the base station of the WSN. The damage indicators are extracted at the base station. The proposed strategy yields a WSN-based SHM system which can effectively and automatically identify and localize damage, and is efficient in energy usage. The proposed strategy is validated using two illustrative numerical simulations and experimental validation is performed using a cantilevered beam.

Wireless Paralleled Control Strategy of Three-phase Inverter Modules for Islanding Distributed Generation Systems

  • Guo, Zhiqiang;Sha, Deshang;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.479-486
    • /
    • 2013
  • This paper presents a control strategy for distributed systems, which can be used in islanded microgrids. The control strategy is based on the droop method, which uses locally measured feedback to achieve load current sharing. Instead of the traditional droop method, an improved one is implemented. A virtual inductor in the synchronous frame for three-phase inverters is proposed to deal with the coupling of the frequency and the amplitude related to the active and reactive power. Compared with the traditional virtual inductor, the proposed virtual inductor is not affected by high frequency noises because it avoids differential calculations. A model is given for the distributed generation system, which is beneficial for the design of the droop coefficients and the value of the virtual inductor. The effectiveness of the proposed control strategy is verified by simulation and experiment results.

Novel Adaptive Distributed Compressed Sensing Algorithm for Estimating Channels in Doubly-Selective Fading OFDM Systems

  • Song, Yuming;He, Xueyun;Gui, Guan;Liang, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2400-2413
    • /
    • 2019
  • Doubly-selective (DS) fading channel is often occurred in many orthogonal frequency division multiplexing (OFDM) communication systems, such as high-speed rail communication systems and underwater acoustic (UWA) wireless networks. It is challenging to provide an accurate and fast estimation over the doubly-selective channel, due to the strong Doppler shift. This paper addresses the doubly selective channel estimation problem based on complex exponential basis expansion model (CE-BEM) in OFDM systems from the perspective of distributed compressive sensing (DCS). We propose a novel DCS-based improved sparsity adaptive matching pursuit (DCS-IMSAMP) algorithm. The advantage of the proposed algorithm is that it can exploit the joint channel sparsity information using dynamic threshold, variable step size and tailoring mechanism. Simulation results show that the proposed algorithm achieves 5dB performance gain with faster operation speed, in comparison with traditional DCS-based sparsity adaptive matching pursuit (DCS-SAMP) algorithm.