• Title/Summary/Keyword: Distributed Temperature

Search Result 1,224, Processing Time 0.03 seconds

Establishment of Effective Freshness Indicators for Seafood During Room-Temperature Distribution Using Commercial Cold Packs and Styrofoam Boxes (시판 보냉팩 및 스티로폼 박스 상온 유통시 효율적인 수산물 선도지표 설정)

  • Lee, Ji Un;Heu, Min Soo;Lee, Jung-Suck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.5
    • /
    • pp.670-680
    • /
    • 2022
  • Owing to the lack of a cold-chain distribution system, most seafood is generally distributed under room temperature conditions. However the degradation of freshness during the distribution process can lead to disputes between sellers and consumers. The most widely used method for low-temperature distribution for seafood includes packaging it with styrofoam boxes and cold packs. In this study, vacuum-packed frozen fillets of four fish species of [white meat (Paralichthys olivaceus and Sebastes schlegelii) and red meat (Scomber japonicus and Scomberomorus niphonius)] were placed in styrofoam boxes with cold packs. Thereafter, changes in chemical (including pH, volatile basic nitrogen, and trimethylamine), physical (odor intensity, hardness, and chewiness), and microbial (viable cell count) characteristics of the fillets were measured during storage at 25℃. To identify the suitable method of determining freshness during the room-temperature distribution, several factors were considered, which included significant difference verification, correlation coefficients, and economic efficiency (experimental cost and time). Volatile basic nitrogen, pH, odor intensity, and viable cell count are the most rapid and accurate freshness indicators for determining freshness of frozen fish fillets during.

Bond behavior between circular steel tube and high-strength concrete after elevated temperatures

  • Ji, Zhou;Zongping, Chen;Maogen, Ban;Yunsheng, Pang
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.575-590
    • /
    • 2022
  • In this paper, bond-slip behavior of high strength concrete filled circular steel tube (HSCFCST) after elevated temperatures treatment was studied. 17 specimens were designed for push-out test. The influence was discussed as following parameters: (a) concrete strength, (b) constant temperature, and (c) bond length. The results showed that (1) after elevated temperatures treatment, the bond strength of the HSCFCST specimens increased first and then decreased with temperature rising; (2) the bond strength increased with the increase of concrete strength at room temperature, while the influence subsided after elevated temperatures treatment; (3) the strain of the circular steel tube was distributed exponentially along its length, the stress changed from exponential distribution to uniform distribution with the increase of load; (4) the bond damage process was postponed with the increase of constant temperature; and (5) the energy consumption capacity of the bonding interface increased with the rise of concrete strength and constant temperature. Moreover, computational formulas of ultimate and residual bond strength were obtained by regression, and the bond-slip constitutive models of HSCFCSTs after elevated temperatures was established.

Thermal field of large-diameter concrete filled steel tubular members under solar radiation

  • Yang, Daigeng;Chen, Guorong;Ding, Xiaofei;Xu, Juncai
    • Computers and Concrete
    • /
    • v.26 no.4
    • /
    • pp.343-350
    • /
    • 2020
  • Concrete-filled steel tubular (CFST) members have been widely used in engineering, and their tube diameters have become larger and larger. But there is no research on the thermal field of large-diameter CFST structure. These studies focused on the thermal field of the large-diameter CFST structure under solar radiation. The environmental factors and the actual placement position were considered, and the finite element model (FEM) of the thermal field of CFST members under solar radiation (SR) was established. Then the FEM was verified by practical experiments. The most unfavorable temperature gradient model in the cross-section was proposed. The testing results showed that the temperature field of the large-diameter CFST member section was non-linearly distributed due to the influence of SR. The temperature field results of CFST members with different pipe diameters indicated that the larger the core concrete diameter was, the slower the central temperature changed, and there was a significant temperature difference between the center and the boundary. Based on the numerical model, the most unfavorable temperature gradient model in the section was proposed. The model showed that the temperature difference around the center of the circle is small, and the boundary temperature difference is significant. The maximum temperature difference is 15.22℃, which appeared in the southern boundary area of the specimen. Therefore, it is necessary to consider the influence of SR on the thermal field of the member for large-diameter CFST members in actual engineering, which causes a large temperature gradient in the member.

Temperature-Dependent Characteristics of Carbon Nanotubes-Film-Based Electrochemical Sensor (CNT 필름 전기화학 센서의 온도 의존 특성에 관한 연구)

  • Noh, Jaeha;Ahn, Hyung Soo;An, Sangsu;Lee, Changhan;Lee, Sangtae;Lee, Moonjin;Seo, Dongmin;Chang, Jiho
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.163-167
    • /
    • 2022
  • In this study, we investigated a carbon nanotube (CNT) film sensor to detect hazardous and noxious substances distributed in seawater. The response change of the sensor was studied according to environmental temperature, and its temperature coefficient of resistance (TCR, α) was measured. The temperature of the CNT film (~50 ㎛) was in the range of 20-50 ℃, and αCNT was calculated to be -0.0011 %/ ℃. We experimentally confirmed that the CNT film had a smaller TCR value than that of the conventional sensor. Therefore, we investigated the response change of the CNT sensor according to temperature. The CNT sensor showed a relatively small error of approximately 2.3 % up to 30 ℃, which is within the temperature range of the seawater of the Korean Peninsula. However, when the temperature exceeded 40 ℃, the error in the CNT sensor increased by more than 5.2 %. We fabricated a metal oxide (ITO, indium-tin-oxide) film and compared its performance with that of the CNT sensor. The ITO sensor showed an error of >12.5 % at 30 ℃, indicating that in terms of the stability of the sensor to temperature, the CNT film sensor has superior performance.

An Experimental and Numerical Analysis on Performance Comparison of a Trigeneration Desiccant System and Conventional Air-conditioning System (Trigeneration 제습공조시스템과 일반공조시스템의 성능 비교 실험 및 수치해석)

  • Kim, Hyoung-Tae;Chae, Jungmin;Cho, Young-Ah;Park, So-jin;Song, Geun-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.3
    • /
    • pp.32-37
    • /
    • 2018
  • Recently, the distributed power generation market using natural gas is expected to expand gradually according to the government's future energy conversion policy. Distributed power generation means small power generation source near the power demand site, which has the advantage of reducing the construction costs of the transmission and distribution infrastructure, operating cost and power loss. A typical example of distributed generation using natural gas is the trigeneration system. In this study, we conducted a basic study on the performance analysis of trigeneration desiccant system for dehumidifying / cooling / heating in the air conditioner room by using the cold and engine waste heat energy generated in the trigeneration system. It shows that the system efficiency increases and the energy consumption decreases as the temperature difference between the inlet and outlet of the trigeneration system increases compared with the general air conditioning system.

Generation of the Battlefield in Distributed Simulation System Based on Synthetic Environment Representation and Interchange Standard (SEDRIS) (분산 시뮬레이션 시스템에서 합성 환경 표현 및 교환 표준(SEDRIS) 기반의 전장 환경 구축)

  • Hwam, Won Kyoung;Kim, Jung-Hoon;Na, Young-Nam;Cheon, Sang Uk;Park, Sang C.
    • Journal of Information Technology and Architecture
    • /
    • v.9 no.3
    • /
    • pp.253-263
    • /
    • 2012
  • Presented in the paper is a methodology for the distributed simulation of underwater warfare based on standard synthetic environment. In the case of underwater warfare simulation, it is very important to reflect environmental data, such as salinity and temperature. For the reusability and interoperability of environmental data, this paper adopts Synthetic Environmental Data Representation and Interchange Specification (SEDRIS(ISO standard for environmental data)). Although SEDRIS provides various merits as an international standard, applying of SEDRIS has been hindered by its broadness and heaviness. To relieve the difficulties, this paper proposes an efficient procedure to utilize SEDRIS technology for the atmosphere and underwater environment. This paper identifies SEDRIS structure for the atmosphere/underwater structured dimensional grid-based and implements the proposed procedure on the High Level Architecture (HLA) / Run-Time Infrastructure (RTI) to explain the generation of the battlefield in a distributed simulation system.

Case Studies on Distributed Temperature and Strain Sensing(DTSS) by using an Optical fiber (광섬유 센서를 이용한 온도 및 변형 모니터링에 대한 현장응용 사례)

  • Kim, Jung-Yul;Kim, Yoo-Sung;Lee, Sung-Uk;Min, Kyoung-Ju;Park, Dong-Su;Pang, Gi-Sung;Kim, Kang-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.86-95
    • /
    • 2006
  • Brillouin backscatter is a type of reflection that occurs when light is shone into an optical fibre. Brillouin reflections are very sensitive to changes in the fibre arising from external effects, such as temperature, strain and pressure. We report here several case studies on the measurement of strain using Brillouin reflections. A mechanical bending test of an I beam, deployed with both fiber optic sensors and conventional strain gauge rosettes, was performed with the aim of evaluating: (1) the capability and technical limit of the DTSS technology for strain profile sensing; (2) the reliability of strain measurement using fiber optic sensor. The average values of strains obtained from both DTSS and strain gauges (corresponding to the deflection of I beam) showed a linear relationship and an excellent one-to-one match. A practical application of DTSS technology as an early warning system for land sliding or subsidence was examined through a field test at a hillside. Extremely strong, lightweight, rugged, survivable tight-buffered cables, designed for optimal strain transfer to the fibre, were used and clamped on the subsurface at a depth of about 50cm. It was proved that DTSS measurements could detect the exact position and the progress of strain changes induced by land sliding and subsidence. We also carried out the first ever distributed dynamic strain measurement (10Hz) on the Korean Train eXpress(KTX) railway track in Daejeon, Korea. The aim was to analyse the integrity of a section of track that had recently been repaired. The Sensornet DTSS was used to monitor this 85m section of track while a KTX train passed over. In the repaired section the strain increases to levels of 90 microstrain, whereas in the section of regular track the strain is in the region of 30-50 microstrain. The results were excellent since they demonstrate that the DTSS is able to measure small, dynamic changes in strain in rails during normal operating conditions. The current 10km range of the DTSS creates a potential to monitor the integrity of large lengths of track, and especially higher risk sections such as bridges, repaired track and areas at risk of subsidence.

  • PDF

A Study on Drought Trend in Han River Basin (한강유역의 가뭄경향에 관한 연구)

  • Kim, Hyeong-Su;Mun, Jang-Won;Kim, Jae-Hyeong;Kim, Jung-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.4
    • /
    • pp.437-446
    • /
    • 2000
  • THe drought analysis is performed by applications of truncation level method and conditional probability concept for hydrologic time series in Han river basin. The distributed trend of conditional probability is determined using kriging method for the time series. This study uses daily flowrate, monthly rainfall, and daily high temperature data sets. The daily flowrate data of 12 years(1986~1997) is used for the analysis. Also, the 14 years' data sets(1986~1999) for monthly rainfall and daily high temperature obtained from the National Weather Service of Korea are used in this study. In the cases of flowrate and rainfall data sets, the estimated value corresponding to the truncation level is decreased as the truncation level is increased but in the high temperature data, the value is increased as the truncation level is increased. The conditional probability varies according to the observations and sites. However, the distributed trend of drought is similar over the basin. As a result, the possibility of the drought is high in the middle and lower parts of Han river basin and thus it is recommended the distributed trend of drought be considered when the plan or measures for drought are established.

  • PDF

Effect of Sintering Temperature on the High Temperature Oxidation of Fe-Cr-Al Powder Porous Metal Manufactured by Electrospray Process (정전 분무법을 이용하여 제조된 Fe-Cr-Al 분말 다공체 금속의 고온 산화에 미치는 소결 온도의 영향)

  • Oh, Jae-Sung;Kong, Young-Min;Kim, Byoung-Kee;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.19 no.6
    • /
    • pp.435-441
    • /
    • 2012
  • A new manufacturing process of Fe-Cr-Al powder porous metal was attempted. First, ultra-fine fecralloy powders were produced by using the submerged electric wire explosion process. Evenly distributed colloid (0.05~0.5% powders) was dispersed on PU (Polyurethane) foam through the electrospray process. And then degreasing and sintering processes were conduced. In order to examine the effect of sintering temperature in process, pre-samples were sintered for two hours at temperatures of $1350^{\circ}C$, $1400^{\circ}C$, $1450^{\circ}C$, and $1500^{\circ}C$, respectively, in $H_2$ atmospheres. A 24-hour TGA (thermo gravimetric analysis) test was conducted at $1000^{\circ}C$ in a 79% $N_2$+21% $O_2$ to investigate the high temperature oxidation behavior of powder porous metal. The results of the high temperature oxidation tests showed that oxidation resistance increased with increasing sintering temperature (2.57% oxidation weight gain at $1500^{\circ}C$ sintered specimen). The high temperature oxidation mechanism of newly manufactured Fe-Cr-Al powder porous metal was also discussed.

The Analysis of Temperature Characteristics of a Superconducting Power Supply Due to the Eddy Current (와전류에 의한 초전도 전원장치의 온도특성 해석에 관한 연구)

  • O, Yun-Sang;Bae, Joon-Han;Song, Myung-Kon;Ji, Chang-Sub;Kim, Ho-Min;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.175-177
    • /
    • 1996
  • This paper is studied on the numerical analysis of temperature distribution on the Nb-foil due to the eddy current under operating a superconducting power supply. The increase of rotating speed and magnetic flux above critical magnetic field lead to the temperature rising in the normal spot, the heat was distributed in the region of 30% distance from the center of the normal spot, but the most of the heat was transferred to LHe. Under operation of the sc power supply, the increase of rotation speed has the more influence on the temperature rising than that of magnetic flux. we can conclude that the totaling speed of normal spot is the main design consideration of the sc power supply, and get the optimal value of rotating speed.

  • PDF