• Title/Summary/Keyword: Distributed Temperature

Search Result 1,224, Processing Time 0.042 seconds

Sintering Behavior of Bimodal Size-Distributed Alumina Powder Mixtures (이중분포를 갖는 알루미나 혼합분체의 소결겨동)

  • 이정아;김정주
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.7
    • /
    • pp.718-724
    • /
    • 1999
  • Densification and grain growth behavior of bimodal size distributed alumina powder mixtures were investigated as a function of amount of coarse alumina powder. The specimens which contained coarse alumina powder for 60to 80wt% showed the highest green density. The amount of shrinkage of sintered specimen lineraly decreased with the increase of coarse alumina powder up to the content that showed the highest green density and then further addition of coarse alumina powder led to drastic decrease of shrinkage of specimen. Especially crack-like void were concurrently revealed in the sintered body with addition of coarse alumina powder above 60wt% When the sintering temperature increased up to 1650$^{\circ}C$ the amount of shrinkage of specimen linearly decreased and the grain growth were also retarded with increase of coarse lauminia powder.

  • PDF

Surface Emitting Terahertz Transistor Based on Charge Plasma Oscillation

  • Kumar, Mirgender;Park, Si-Hyun
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.544-550
    • /
    • 2017
  • This simulation based study reports a novel tunable, compact, room temperature terahertz (THz) transistor source, operated on the concept of charge plasma oscillation with the capability of radiating within a terahertz gap. A vertical cavity with a quasi-periodic distributed-Bragg-reflector has been attached to a THz plasma wave transistor to achieve a monochromatic coherent surface emission for single as well as multi-color operation. The resonance frequency has been tuned from 0.5 to 1.5 THz with the variable quality factor of the optical cavity from 5 to 290 and slope efficiency maximized to 11. The proposed surface emitting terahertz transistor is able to satisfy the demand for compact solid state terahertz sources in the field of teratronics. The proposed device can be integrated with Si CMOS technology and has opened the way towards the development of silicon photonics.

Rapid Energy Transfer Mechanism of F Electronic Excitation to the Vibration of Randomly Distributed $OH^- in KCI

  • 장두전;아철승
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.10
    • /
    • pp.1063-1068
    • /
    • 1998
  • The nature of F electronic excitation energy transfer to OH- vibrational levels in KCl crystals is the exchange interaction, although the transfer process exhibits three temporally distinguishable components depending on the distance between excited F center and OH-. The critical distance as well as rate of the major energy transfer process in randomly distributed samples increases rapidly as OH- librational motions become active with temperature rise. The excited state character introduced into the OH- ground electronic state by perturbation is essential for the exchange interaction. The perturbation is brought about by the expanded electron cloud of excited F center for OH- associated to F center, whereas by librations and lattice vibrations perpendicular to the bond axis for isolated OH- . F excitation quenching efficiency by OH- is dependent on the variation of the critical distance rather than the rate as the rate is much faster than the normal F bleach recovery rate.

Detection of Voletile Organic Compounds by Using DBR Porous Silicon (DBR 다공성 실리콘을 이용한 휘발성 유기화합물의 감지)

  • Park, Cheol Young
    • Journal of Integrative Natural Science
    • /
    • v.2 no.4
    • /
    • pp.275-279
    • /
    • 2009
  • Recently, number of studies for porous silicon (PSi) have been investigated by many researchers. Multistructured porous silicon such as a distributed Bragg reflector (DBR) PSi, has been a topic of interest, because of its unique optical properties. DBR PSi were prepared by using an electrochemical etch of $P{^+}{^+}$-type silicon wafer with resistivity between 0.1 and $10m{\Omega}cm$. The electrochemical etch with square wave current density results in two different refractive indices in the porous layer. In this work, DBR porous silicon chips for a simple and portable organic vapor-sensing device have fabricated. The optical characteristics of DBR PSi have been investigated. DBR porous silicon have been characterized by FT-IR and Ocean optics 2000 spectrometer. The device used DBR PSi chip has been demonstrated as an excellent gas sensor, showing a great senstivity to organic vapor at room temperature.

  • PDF

Semi-analytical solution for buckling of SMA thin plates with linearly distributed loads

  • Parizi, Fatemeh Salemizadeh;Mohammadi, Meisam
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.661-669
    • /
    • 2019
  • Buckling analysis of shape memory alloy (SMA) rectangular plates subjected to uniform and linearly distributed inplane loads is the main objective in the present paper. Brinson's model is developed to express the constitutive characteristics of SMA plate. Using the classical plate theory and variational approach, stability equations are derived. In addition to external inplane mechanical loads, the plate is subjected to the pre-stresses caused by the recovery stresses that are generated during martensitic phase transformation. Ritz method is used for solving the governing stability equations. Finally, the effects of conditions on the edges, thickness, aspect ratio, temperature and pre-strains on the critical buckling loads of SMA plate are investigated in details.

Orthotropic magneto-thermoelastic solid with higher order dual-phase-lag model in frequency domain

  • Lata, Parveen;Himanshi, Himanshi
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.315-327
    • /
    • 2021
  • Here, in this research we have studied a two dimensional problem in a homogeneous orthotropic magneto-thermoelastic medium with higher order dual-phase-lag heat transfer with combined effects of rotation and hall current in generalized thermoelasticity due to time harmonic sources. As an application the bounding surface is subjected to uniformly distributed and concentrated loads (mechanical and thermal source). Fourier transform technique is used to solve the problem. The expressions for displacement components, stress components and temperature change are derived in frequency domain. Numerical inversion technique has been used to obtain the results in physical domain. The effect of frequency has been depicted with the help of graphs.

MEDICOS: An MDO-Enabling Distributed Computing System (MDO를 위한 분산 컴퓨팅 시스템)

  • Jin, Shen-Yi;Jeong, Karp-Joo;Lee, Jae-Woo;Kim, Jong-Hwa;Jin, Yu-Xuan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.778-780
    • /
    • 2004
  • This paper presents a computing system, called MEDICOS. that enables Multidisciplinary Design Optimization (MDO) technology for engineering design on distributed environments. In MDO, various legacy softwares have to be Integrated, so dynamic configuration and seamless coordination between these legacy softwares must be supported. MEDICOS is designed to address these issues by the Linda shared memory model-based design and the agent-based wrapper technology. A prototype system for engineering designs is developed and tested with designing a super high temperature vacuum furnace.

  • PDF

Development of Underground Hydrogen Pipeline Monitoring Algorithm based on Optical Fiber Sensing: Case Study on DAS, DTS Sensing (광섬유 기반 지하매설 수소배관망 이상상태 탐지 알고리즘 개발: DAS, DTS 센싱 데이터를 중심으로)

  • Jae-Woo Park;Dong-Jun Yeom
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.5
    • /
    • pp.1119-1128
    • /
    • 2024
  • This study developed an anomaly detection algorithm for underground hydrogen pipelines using Distributed Acoustic Sensing (DAS) and Distributed Temperature Sensing (DTS) technologies. The LSTM-AE-based algorithm was tested in a real-world testbed, showing high performance in detecting third-party construction activities and gas leaks. The model achieved 99.86% accuracy, 100% precision, 99.74% recall, and a 99.87% F1 score for DAS data, and 99.95% accuracy, 100% precision, 95.24% recall, and a 97.44% F1 score for DTS data. These results demonstrate the algorithm's effectiveness in real-time monitoring and its potential to enhance the safety of hydrogen pipeline infrastructure. Future research will focus on optimizing the algorithm for broader applications.

Assessment on Damage Risk of Corn for High Temperature at Reproductive Stage in Summer Season Based on Climate Scenario RCP 8.5 and 4.5

  • Seo, Myung-Chul;Cho, Hyeon-Suk;Kim, Jun-Hwan;Sang, Wan-Gyu;Shin, Pyeong;Lee, Geon Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • In order to assess risk of high temperature damages about corn during reproduction stages in the future, we carried out analysis of climate change scenarios RCP (Representative Concentration Pathway) 4.5 and RCP8.5 distributed by KMA (Korea Meteorological Administration) in 2012. We established two indexes such as average of annual risk days of high temperature damage which express frequency and strengthen index of high temperature damage. As results of producing maps for 157 cities and counties about average of annual risk days of high temperature damage during total periods of scenarios, the risk of high temperature in RCP8.5 was evaluated to increase at all over nation except inland area of Gangwon province, while RCP4.5 showed similar to present, or little higher. The maps of annual risk days of high temperature damage with 10 years interval in RCP8.5 prospected that the risk for damaging corn growth would increase rapidly from 2030's. The largest risk of high temperature damage in the future of RCP8.5 was analyzed at Changnyeong county located east-south inland area in Kyeongnam province, while the smallest of risk counties were Pyeongchang, Taebaek, Inje, and Jeongseon. The prospect at 12 counties which is large to produce corn at present and contains large plains have been showed that there will be only a little increase of risk of high temperature at Goesan, Yangpyeong, Hongcheon, Seosan, and Mooju until 2060's. But considering strengthen index of high temperature damage, most regions analyzed would be prospected to increase rapidly after 2030's. To cope with high temperature damage of corn in the future, we should develop various practical technologies including breeding adapted varieties and controlling cultivation periods.

Change in plasma cortisol and glucose levels of Oncorhynchus keta according to water temperature

  • Young Seok Seo;Hyo Bin Lee;Joo Hak Jeong;Seong Jun Mun;Han Kyu Lim
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.2
    • /
    • pp.117-132
    • /
    • 2023
  • Chum salmon (Oncorhynchus keta) is a species of anadromous salmonid inhabiting coastal rivers in the North Pacific and the Arctic in the Bering and is the most widely distributed among Pacific salmon species. It is an important fish species in Korea as the salmon releasing project is being actively carried out. This study was conducted to investigate changes in the physiological activity of O. keta according to water temperature. Three experiments were conducted according to the water temperature and period, and the plasma concentrations of cortisol and glucose were analyzed from the blood samples of the experimental groups. Experiment I is a short-term water temperature experiment, in which water temperature stimulation was given for 4 hours at water temperatures of 12℃, 16℃ (control), 20℃, and 24℃, and a recovery period was given for 4 hours. Experiment II is an experiment in which water temperature stimulation was given for 24 hours, 48 hours, and 72 hours at a high temperature of 24℃, and a recovery period was given for 12 hours, respectively. Experiment III is a long-term water temperature experiment, in which the water temperature was 12℃, 16℃ (control), 20℃, and 24℃ for 8 weeks. As a result of the experiment, in Experiment I, there was no significant difference in the survival rate between the experimental groups, but the concentration of cortisol and glucose in the plasma according to the set water temperature showed a significant difference. In Experiment II, there was no significant trend according to the maintenance time of the high-temperature state, but as the temperature increased, the plasma cortisol and glucose levels significantly increased compared to the control group. In Experiment III, all of the experimental group C (24℃) died in the 1st week, and there was no significant difference in the plasma glucose at the 1st and 8th weeks among the remaining experimental groups.