• Title/Summary/Keyword: Distributed Systems

Search Result 4,031, Processing Time 0.026 seconds

On the Application of Cyclic Delay Diversity to Distributed SC-FDMA Systems (분산할당 SC-FDMA 시스템에서의 순환지연 다이버시티의 적용)

  • Rim, Min-Joong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.49-57
    • /
    • 2008
  • In distributed-allocation OFDMA systems, cyclic delay diversify can improve the system performance by increasing frequency diversity. However, applying cyclic delay diversify to distributed-allocation SC-FDMA systems can affect the performance in two contrary ways: positive effect due to increased frequency diversity and negative effect caused by increased frequency selective channels. This paper addresses these two contrary effects and discusses about when cyclic delay diversity is useful and when it is not very useful for distributed-allocation SC-FDMA systems.

Sliding Window Filtering for Ground Moving Targets with Cross-Correlated Sensor Noises

  • Song, Il Young;Song, Jin Mo;Jeong, Woong Ji;Gong, Myoung Sool
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.146-151
    • /
    • 2019
  • This paper reports a sliding window filtering approach for ground moving targets with cross-correlated sensor noise and uncertainty. In addition, the effect of uncertain parameters during a tracking error on the model performance is considered. A distributed fusion sliding window filter is also proposed. The distributed fusion filtering algorithm represents the optimal linear combination of local filters under the minimum mean-square error criterion. The derivation of the error cross-covariances between the local sliding window filters is the key to the proposed method. Simulation results of the motion of the ground moving target a demonstrate high accuracy and computational efficiency of the distributed fusion sliding window filter.

Development of Coordinated Scheduling Algorithm and End-to-end Delay Analysis for CAN-based Distributed Control Systems (CAN기반 분산 제어시스템의 종단 간 지연시간 분석과 협조 스케줄링 알고리즘 개발)

  • 이희배;김홍열;김대원
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.7
    • /
    • pp.501-508
    • /
    • 2004
  • In this paper, a coordinated scheduling algorithm is proposed to reduce end-to-end delay in distributed control of systems. For the algorithm, the analysis of practical end-to-end delay in the worst case is performed priory with considering implementation of the systems. The end-to-end delay is composed of the delay caused by multi-task scheduling of operating systems, the delay caused by network communications, and the delay caused by asynchronous timing between operating systems and network communications. Through some simulation tests based on CAN(Controller Area Network), the proposed worst case end-to-end delay analysis is validated. Through the simulation tests, it is also shown that a real-time distributed control system designed to existing worst case delay cannot guarantee end-to-end time constraints. With the analysis, a coordinated scheduling algorithm is proposed here. The coordinated scheduling algorithm is focused on the reduction of the delay caused by asynchronous timing between operating systems and network communications. Online deadline assignment strategy is proposed for the scheduling. The performance enhancement of the distributed control systems by the scheduling algorithm is shown through simulation tests.

Integrated Modeling of Distributed Object-Oriented Systems (다수모델을 이용한 객체지향적 분산처리 시스템의 디자인 방법)

  • Lee, Sang-Bum
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.5
    • /
    • pp.1103-1111
    • /
    • 1996
  • The design of distrbuted systems is difficult to achieve as the execution patterns of distrbuted systems are typically more complex than those of non- distributed systems. Thus, research toward the development of design methods for distributed systems is quitely needed. As object-oriented systems and distrbuted systems share similar properties, the combination of these two is somehow natural. In this work, a design of distributed systems is introduced. The goal of the method in this paper is to provide assistance to the process of specifying a formal object- oriented specification from graphical representation specification inputs such as data flow diagrams, state transition diagrams and Petri nets. It addresses the extraction of objects, operations and reationshipsfrom the problem domain with emphasis on the specification of the characteristics of distributed systems. This object identification method is supported by a knowledge base that provides for the automated analysis and reasoning about objects and their relationsships. The final object model is represented in a format which provides a formal mechanism for reprsenting the object information.

  • PDF

Designing Distributed Real-Time Systems with Decomposition of End-to-End Timing Donstraints (양극단 지연시간의 분할을 이용한 분산 실시간 시스템의 설계)

  • Hong, Seong-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.542-554
    • /
    • 1997
  • In this paper, we present a resource conscious approach to designing distributed real-time systems as an extension of our original approach [8][9] which was limited to single processor systems. Starting from a given task graph and a set of end-to-end constraints, we automatically generate task attributes (e.g., periods and deadlines) such that (i) the task set is schedulable, and (ii) the end-to-end timing constraints are satisfied. The method works by first transforming the end-to-end timing constraints into a set of intermediate constraints on task attributes, and then solving the intermediate constraints. The complexity of constraint solving is tackled by reducing the problem into relatively tractable parts, and then solving each sub-problem using heuristics to enhance schedulability. In this paper, we build on our single processor solution and show how it can be extended for distributed systems. The extension to distributed systems reveals many interesting sub-problems, solutions to which are presented in this paper. The main challenges arise from end-to-end propagation delay constraints, and therefore this paper focuses on our solutions for such constraints. We begin with extending our communication scheme to provide tight delay bounds across a network, while hiding the low-level details of network communication. We also develop an algorithm to decompose end-to-end bounds into local bounds on each processor of making extensive use of relative load on each processor. This results in significant decoupling of constraints on each processor, without losing its capability to find a schedulable solution. Finally, we show, how each of these parts fit into our overall methodology, using our previous results for single processor systems.

  • PDF

ON OPTIMAL CONTROL FOR COOPERATIVE ELLIPTIC SYSTEMS UNDER CONJUGATION CONDITIONS

  • H.M. SERAG;L.M. ABD-ELRHMAN;A.A. AL-SABAN
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.2
    • /
    • pp.229-245
    • /
    • 2023
  • In this paper, we consider cooperative elliptic systems under conjugation conditions. We first prove the existence of the state for 2 × 2 cooperative elliptic systems with Dirichlet and Neumann conditions, then we find the set of equations and inequalities that characterizes the optimal control of distributed type for these systems. The case of n × n cooperative systems is also established.

Sensors Network and Security and Multimedia Enhancement

  • Woo, Seon-mi;Lee, Malrey
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.8 no.1
    • /
    • pp.64-68
    • /
    • 2016
  • These fields are integrated to visualize and finalize the proposed development, in simulation environment. SCADA (supervisory control and data acquisition) systems and distributed control systems (DCSs) are widely deployed in all over the world, which are designed to control the industrial infrastructures, in real ways. To supervise and control the various parts of designed systems; trends to require a deep knowledge to understand the overall functional needs of industries, which could be a big challenge. Industrial field devices (or network sensors) are usually distributed in many locations and are controlled from centralized site (or main control center); the communication provides various signs of security issues. To handle these issues, the research contribution will twofold: a method using cryptography is deployed in critical systems for security purposes and overall transmission is controlled from main controller site. At controller site, multimedia components are employed to control the overall transmission graphically, such as system communication, bytes flows, security embedded parameters and others, by the means of multimedia technology.

Necessary optimality conditions in the small for degenerate hyperbolic distributed-parameter control systems

  • Chang, Kun-Soo;Lee, In-Beum
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1043-1048
    • /
    • 1990
  • The degenerate case of multivariable hyperbolic distributed-parameter systems (systems of hyperbolic partial differential equations) in time coordinate t and space coordinate x is characterized by a property that all the characteristic curves of the state equations are parallel to the coordinate axes of independent variables. It is a disturbing fact, although not well known, that the so-called maximum principle as applied to these systems does not exist for the control that depend on time alone. In this paper, however, it is shown that a set of necessary conditions in the small can exist for unconstrained as well as magnitude constrained controls in a locally convex set. The necessary conditions thus derived can be used conveniently to find the optimal control for degenerate hyperbolic distributed-parameter control systems.

  • PDF

A Study for the Voltage Analysis Method of Distribution Systems with Distributed Generation (분산전원이 도입된 배전계통의 전압해석 방법에 관한 연구)

  • 김태응;김재언
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.2
    • /
    • pp.69-78
    • /
    • 2003
  • This paper presents a voltage analysis method of distribution systems interconnected with DG(Distributed Generation). Nowadays, small scale DG becomes to be introduced into power distribution systems. But in that case, it is difficult to properly maintain the terminal voltage of low voltage customers by using only ULTC(Under Load Tap Changer). This paper presents a voltage analysis method of distribution systems with DC for proper voltage regulation of power distribution systems with ULTC. In order to develop the voltage analysis method, distribution system modeling method and advanced loadflow method are proposed. Proposed method has been applied to a 22.9 kV practical power distribution systems.