• 제목/요약/키워드: Distributed Deep Learning Training

검색결과 32건 처리시간 0.021초

쿠버네티스에서 분산 학습 작업 성능 향상을 위한 오토스케일링 기반 동적 자원 조정 오퍼레이터 (Dynamic Resource Adjustment Operator Based on Autoscaling for Improving Distributed Training Job Performance on Kubernetes)

  • 정진원;유헌창
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권7호
    • /
    • pp.205-216
    • /
    • 2022
  • 딥러닝 분산 학습에 사용되는 많은 도구 중 하나는 컨테이너 오케스트레이션 도구인 쿠버네티스에서 실행되는 큐브플로우이다. 그리고 큐브플로우에서 기본적으로 제공하는 오퍼레이터를 사용하여 텐서플로우 학습 작업을 관리할 수 있다. 하지만 파라미터 서버 아키텍처 기반의 딥러닝 분산 학습 작업을 고려할 때 기존의 오퍼레이터가 사용하는 스케줄링 정책은 분산학습 작업의 태스크 친화도를 고려하지 않으며 자원을 동적으로 할당하거나 해제하는 기능을 제공하지 않는다. 이는 작업의 완료 시간이 오래 걸리거나 낮은 자원 활용률로 이어질 수 있다. 따라서 본 논문에서는 작업의 완료 시간을 단축시키고 자원 활용률을 높이기 위해 딥러닝 분산 학습 작업을 효율적으로 스케줄링하는 새로운 오퍼레이터를 제안한다. 기존 오퍼레이터를 수정하여 새로운 오퍼레이터를 구현하고 성능 평가를 위한 실험을 수행한 결과, 제안한 스케줄링 정책은 평균 작업 완료 시간 감소율을 최대 84%, 평균 CPU 활용 증가율을 최대 92%까지 향상시킬 수 있음을 보여준다.

Privacy-Preserving Deep Learning using Collaborative Learning of Neural Network Model

  • Hye-Kyeong Ko
    • International journal of advanced smart convergence
    • /
    • 제12권2호
    • /
    • pp.56-66
    • /
    • 2023
  • The goal of deep learning is to extract complex features from multidimensional data use the features to create models that connect input and output. Deep learning is a process of learning nonlinear features and functions from complex data, and the user data that is employed to train deep learning models has become the focus of privacy concerns. Companies that collect user's sensitive personal information, such as users' images and voices, own this data for indefinite period of times. Users cannot delete their personal information, and they cannot limit the purposes for which the data is used. The study has designed a deep learning method that employs privacy protection technology that uses distributed collaborative learning so that multiple participants can use neural network models collaboratively without sharing the input datasets. To prevent direct leaks of personal information, participants are not shown the training datasets during the model training process, unlike traditional deep learning so that the personal information in the data can be protected. The study used a method that can selectively share subsets via an optimization algorithm that is based on modified distributed stochastic gradient descent, and the result showed that it was possible to learn with improved learning accuracy while protecting personal information.

A General Distributed Deep Learning Platform: A Review of Apache SINGA

  • Lee, Chonho;Wang, Wei;Zhang, Meihui;Ooi, Beng Chin
    • 정보과학회지
    • /
    • 제34권3호
    • /
    • pp.31-34
    • /
    • 2016
  • This article reviews Apache SINGA, a general distributed deep learning (DL) platform. The system components and its architecture are presented, as well as how to configure and run SINGA for different types of distributed training using model/data partitioning. Besides, several features and performance are compared with other popular DL tools.

딥러닝 모델 병렬 처리 (Deep Learning Model Parallelism)

  • 박유미;안신영;임은지;최용석;우영춘;최완
    • 전자통신동향분석
    • /
    • 제33권4호
    • /
    • pp.1-13
    • /
    • 2018
  • Deep learning (DL) models have been widely applied to AI applications such image recognition and language translation with big data. Recently, DL models have becomes larger and more complicated, and have merged together. For the accelerated training of a large-scale deep learning model, model parallelism that partitions the model parameters for non-shared parallel access and updates across multiple machines was provided by a few distributed deep learning frameworks. Model parallelism as a training acceleration method, however, is not as commonly used as data parallelism owing to the difficulty of efficient model parallelism. This paper provides a comprehensive survey of the state of the art in model parallelism by comparing the implementation technologies in several deep learning frameworks that support model parallelism, and suggests a future research directions for improving model parallelism technology.

분산 딥러닝에서 통신 오버헤드를 줄이기 위해 레이어를 오버래핑하는 하이브리드 올-리듀스 기법 (Hybrid All-Reduce Strategy with Layer Overlapping for Reducing Communication Overhead in Distributed Deep Learning)

  • 김대현;여상호;오상윤
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제10권7호
    • /
    • pp.191-198
    • /
    • 2021
  • 분산 딥러닝은 각 노드에서 지역적으로 업데이트한 지역 파라미터를 동기화는 과정이 요구된다. 본 연구에서는 분산 딥러닝의 효과적인 파라미터 동기화 과정을 위해, 레이어 별 특성을 고려한 allreduce 통신과 연산 오버래핑(overlapping) 기법을 제안한다. 상위 레이어의 파라미터 동기화는 하위 레이어의 다음 전파과정 이전까지 통신/계산(학습) 시간을 오버랩하여 진행할 수 있다. 또한 이미지 분류를 위한 일반적인 딥러닝 모델의 상위 레이어는 convolution 레이어, 하위 레이어는 fully-connected 레이어로 구성되어 있다. Convolution 레이어는 fully-connected 레이어 대비적은 수의 파라미터를 가지고 있고 상위에 레이어가 위치하므로 네트워크 오버랩 허용시간이 짧고, 이를 고려하여 네트워크 지연시간을 단축할 수 있는 butterfly all-reduce를 사용하는 것이 효과적이다. 반면 오버랩 허용시간이 보다 긴 경우, 네트워크 대역폭을 고려한 ring all-reduce를 사용한다. 본 논문의 제안 방법의 효과를 검증하기 위해 제안 방법을 PyTorch 플랫폼에 적용하여 이를 기반으로 실험 환경을 구성하여 배치크기에 대한 성능 평가를 진행하였다. 실험을 통해 제안 기법의 학습시간은 기존 PyTorch 방식 대비 최고 33% 단축된 모습을 확인하였다.

Emulearner: Deep Learning Library for Utilizing Emulab

  • Song, Gi-Beom;Lee, Man-Hee
    • Journal of information and communication convergence engineering
    • /
    • 제16권4호
    • /
    • pp.235-241
    • /
    • 2018
  • Recently, deep learning has been actively studied and applied in various fields even to novel writing and painting in ways we could not imagine before. A key feature is that high-performance computing device, especially CUDA-enabled GPU, supports this trend. Researchers who have difficulty accessing such systems fall behind in this fast-changing trend. In this study, we propose and implement a library called Emulearner that helps users to utilize Emulab with ease. Emulab is a research framework equipped with up to thousands of nodes developed by the University of Utah. To use Emulab nodes for deep learning requires a lot of human interactions, however. To solve this problem, Emulearner completely automates operations from authentication of Emulab log-in, node creation, configuration of deep learning to training. By installing Emulearner with a legitimate Emulab account, users can focus on their research on deep learning without hassle.

딥러닝을 사용하는 IoT빅데이터 인프라에 필요한 DNA 기술을 위한 분산 엣지 컴퓨팅기술 리뷰 (Distributed Edge Computing for DNA-Based Intelligent Services and Applications: A Review)

  • ;조위덕
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제9권12호
    • /
    • pp.291-306
    • /
    • 2020
  • 오늘날 데이터 네트워크 AI (DNA) 기반 지능형 서비스 및 애플리케이션은 비즈니스의 삶의 질과 생산성을 향상시키는 새로운 차원의 서비스를 제공하는 것이 현실이 되었다. 인공지능(AI)은 IoT 데이터(IoT 장치에서 수집한 데이터)의 가치를 높이며, 사물 인터넷(IoT)은 AI의 학습 및 지능 기능을 촉진한다. 딥러닝을 사용하여 대량의 IoT 데이터에서 실시간으로 인사이트를 추출하려면 데이터가 생성되는 IoT 단말 장치에서의 처리능력이 필요하다. 그러나 딥러닝에는 IoT 최종 장치에서 사용할 수 없는 상당 수의 컴퓨팅 리소스가 필요하다. 이러한 문제는 처리를 위해 IoT 최종 장치에서 클라우드 데이터 센터로 대량의 데이터를 전송함으로써 해결되었다. 그러나 IoT 빅 데이터를 클라우드로 전송하면 엄청나게 높은 전송 지연과 주요 관심사인 개인 정보 보호 문제가 발생한다. 분산 컴퓨팅 노드가 IoT 최종 장치 가까이에 배치되는 엣지 컴퓨팅은 높은 계산 및 짧은 지연 시간 요구 사항을 충족하고 사용자의 개인 정보를 보호하는 실행 가능한 솔루션이다. 본 논문에서는 엣지 컴퓨팅 내에서 딥러닝을 활용하여 IoT 최종 장치에서 생성된 IoT 빅 데이터의 잠재력을 발휘하는 현재 상태에 대한 포괄적인 검토를 제공한다. 우리는 이것이 DNA 기반 지능형 서비스 및 애플리케이션 개발에 기여할 것이라고 본다. 엣지 컴퓨팅 플랫폼의 여러 노드에서 딥러닝 모델의 다양한 분산 교육 및 추론 아키텍처를 설명하고 엣지 컴퓨팅 환경과 네트워크 엣지에서 딥러닝이 유용할 수 있는 다양한 애플리케이션 도메인에서 딥러닝의 다양한 개인 정보 보호 접근 방식을 제공한다. 마지막으로 엣지 컴퓨팅 내에서 딥러닝을 활용하는 열린 문제와 과제에 대해 설명한다.

쿠버네티스에서 ML 워크로드를 위한 분산 인-메모리 캐싱 방법 (Distributed In-Memory Caching Method for ML Workload in Kubernetes)

  • 윤동현;송석일
    • Journal of Platform Technology
    • /
    • 제11권4호
    • /
    • pp.71-79
    • /
    • 2023
  • 이 논문에서는 기계학습 워크로드의 특징을 분석하고 이를 기반으로 기계학습 워크로드의 성능 향상을 위한 분산 인-메모리 캐싱 기법을 제안한다. 기계학습 워크로드의 핵심은 모델 학습이며 모델 학습은 컴퓨팅 집약적 (Computation Intensive)인 작업이다. 쿠버네티스 기반 클라우드 환경에서 컴퓨팅 프레임워크와 스토리지를 분리한 구조에서 기계학습 워크로드를 수행하는 것은 자원을 효과적으로 할당할 수 있지만, 네트워크 통신을 통해 IO가 수행되야 하므로 지연이 발생할 수 있다. 이 논문에서는 이런 환경에서 수행되는 머신러닝 워크로드의 성능을 향상하기 위한 분산 인-메모리 캐싱 기법을 제안한다. 특히, 제안하는 방법은 쿠버네티스 기반의 머신러닝 파이프라인 관리 도구인 쿠브플로우를 고려하여 머신러닝 워크로드에 필요한 데이터를 분산 인-메모리 캐시에 미리 로드하는 새로운 방법을 제안한다.

  • PDF

A Review on Advanced Methodologies to Identify the Breast Cancer Classification using the Deep Learning Techniques

  • Bandaru, Satish Babu;Babu, G. Rama Mohan
    • International Journal of Computer Science & Network Security
    • /
    • 제22권4호
    • /
    • pp.420-426
    • /
    • 2022
  • Breast cancer is among the cancers that may be healed as the disease diagnosed at early times before it is distributed through all the areas of the body. The Automatic Analysis of Diagnostic Tests (AAT) is an automated assistance for physicians that can deliver reliable findings to analyze the critically endangered diseases. Deep learning, a family of machine learning methods, has grown at an astonishing pace in recent years. It is used to search and render diagnoses in fields from banking to medicine to machine learning. We attempt to create a deep learning algorithm that can reliably diagnose the breast cancer in the mammogram. We want the algorithm to identify it as cancer, or this image is not cancer, allowing use of a full testing dataset of either strong clinical annotations in training data or the cancer status only, in which a few images of either cancers or noncancer were annotated. Even with this technique, the photographs would be annotated with the condition; an optional portion of the annotated image will then act as the mark. The final stage of the suggested system doesn't need any based labels to be accessible during model training. Furthermore, the results of the review process suggest that deep learning approaches have surpassed the extent of the level of state-of-of-the-the-the-art in tumor identification, feature extraction, and classification. in these three ways, the paper explains why learning algorithms were applied: train the network from scratch, transplanting certain deep learning concepts and constraints into a network, and (another way) reducing the amount of parameters in the trained nets, are two functions that help expand the scope of the networks. Researchers in economically developing countries have applied deep learning imaging devices to cancer detection; on the other hand, cancer chances have gone through the roof in Africa. Convolutional Neural Network (CNN) is a sort of deep learning that can aid you with a variety of other activities, such as speech recognition, image recognition, and classification. To accomplish this goal in this article, we will use CNN to categorize and identify breast cancer photographs from the available databases from the US Centers for Disease Control and Prevention.

스파크 기반 딥 러닝 분산 프레임워크 성능 비교 분석 (A Comparative Performance Analysis of Spark-Based Distributed Deep-Learning Frameworks)

  • 장재희;박재홍;김한주;윤성로
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권5호
    • /
    • pp.299-303
    • /
    • 2017
  • 딥 러닝(Deep learning)은 기존 인공 신경망 내 계층 수를 증가시킴과 동시에 효과적인 학습 방법론을 제시함으로써 객체/음성 인식 및 자연어 처리 등 고수준 문제 해결에 있어 괄목할만한 성과를 보이고 있다. 그러나 학습에 필요한 시간과 리소스가 크다는 한계를 지니고 있어, 이를 줄이기 위한 연구가 활발히 진행되고 있다. 본 연구에서는 아파치 스파크 기반 클러스터 컴퓨팅 프레임워크 상에서 딥 러닝을 분산화하는 두 가지 툴(DeepSpark, SparkNet)의 성능을 학습 정확도와 속도 측면에서 측정하고 분석하였다. CIFAR-10/CIFAR-100 데이터를 사용한 실험에서 SparkNet은 학습 과정의 정확도 변동 폭이 적은 반면 DeepSpark는 학습 초기 정확도는 변동 폭이 크지만 점차 변동 폭이 줄어들면서 SparkNet 대비 약 15% 높은 정확도를 보였고, 조건에 따라 단일 머신보다도 높은 정확도로 보다 빠르게 수렴하는 양상을 확인할 수 있었다.