A General Distributed Deep Learning Platform: A Review of Apache SINGA

  • Lee, Chonho (Computer Science, National University of Singapore) ;
  • Wang, Wei (Computer Science, National University of Singapore) ;
  • Zhang, Meihui (Singapore University of Technology and Design) ;
  • Ooi, Beng Chin (IDMI, National University of Singapore)
  • Published : 2016.03.17

Abstract

This article reviews Apache SINGA, a general distributed deep learning (DL) platform. The system components and its architecture are presented, as well as how to configure and run SINGA for different types of distributed training using model/data partitioning. Besides, several features and performance are compared with other popular DL tools.

Keywords

References

  1. W. Wang, G. Chen, T. T. A. Dinh, J. Gao, B. C. Ooi, K.-L. Tan, and S. Wang, SINGA: Putting deep learning in the hands of multimedia users, ACM Multimedia, 2015.
  2. W. Wang, G. Chen, H. Chen, T. T. A. Dinh, J. Gao, B. C. Ooi, K-L. Tan, and S. Wang., Deep Learning At Scale and At Ease, ACM Trans. Multimedia Comput. Commun. Appl. 9, 4, Article 39 (under review) www.comp.nus. edu.sg/ ooibc/singa-tomm.pdf
  3. J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A. W. Senior, P. A. Tucker, K. Yang, and A. Y. Ng, Large scale distributed deep networks, NIPS, 2012.
  4. R. Wu, S. Yan, Y. Shan, Q. Dang, and G. Sun, Deep image: Scaling up image recognition. CoRR, abs/1501.02876, 2015.
  5. Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, Caffe: Convolutional architecture for fast feature embedding, arXiv:1408.5093, 2014.