• Title/Summary/Keyword: Distributed Data Analysis

Search Result 2,340, Processing Time 0.039 seconds

An Implementation of Mathematics Editor Using SGML Notation (SGML 표기법을 이용하는 수식 편집기의 설계 및 구현)

  • Kim, Tae-Hoon;Hyun, Deuk-Chang;Lee, Soo-Youn
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.5
    • /
    • pp.1082-1092
    • /
    • 1996
  • The design of distrbuted systems is difficult to achieve as the execution patterns of distrbuted systems are typically more complex than those of non- distributed systems. Thus, research toward the development of design methods for distributed systems is quitely needed. As object-oriented systems and distrbuted systems share similar properties, the combination of these two is somehow natural. In this work, a design of distributed systems is introduced. The goal of the method in this paper is to provide assistance to the process of specifying a formal object- oriented specification from graphical representation specification inputs such as data flow diagrams, state transition diagrams and Petri nets. It addresses the extraction of objects, operations and reationshipsfrom the problem domain with emphasis on the specification of the characteristics of distributed systems. This object identification method is supported by a knowledge base that provides for the automated analysis and reasoning about objects and their relationsships. The final object model is represented in a format which provides a formal mechanism for reprsenting the object information.

  • PDF

Development of Semi-Distributed TOPMODEL (준분포형 TOPMODEL 개발)

  • Bae, Deg-Hyo;Kim, Jin-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.10 s.159
    • /
    • pp.895-906
    • /
    • 2005
  • The diversity of observed hydrologic data and the development of geographic information system leads significant progress for developing distributed runoff models in the world. One of the typical examples is TOPMODEL, but the spatial coverage of its application Is limited on small headwater basins. The purpose of this study attempts to overcome its limitation and consequently develops a semi-distributed TOPMODEL. The developed model is composed of two components: a watershed runoff component for a lumped representation of hydrologic runoff process on the catchment scale and a kinematic wave type hydraulic channel routing component lot routing the catchment outflows. The application basin is the $2,703km^2$ upper Soyang dam site and several daily and hourly events are selected for model calibrations and verifications. The model parameters are estimated on 1990 daily event. The model performance on correlation coefficient between observed and computed flows are above 0.90 for the verification events. It is concluded that the developed model in this study can be used for flood analysis in large drainage basins.

Performance Analysis of Cooperative Network Error Correcting Scheme Using Distributed Turbo Code and Power Allocation (양방향 중계 채널에서 네트워크 코딩을 이용한 분산 터보 부호 기법과 전력 할당의 성능 분석)

  • Lim, Jin-Soo;Ok, Jun-Ho;Yoo, Chul-Hae;Shin, Dong-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2C
    • /
    • pp.57-64
    • /
    • 2011
  • A two-way relay channel is a bidirectional cooperative communication channel between two nodes using a relay. In many cooperative communication schemes, a relay transmits its data to each node using separate channels. However, in the two-way relay channel, a relay can broadcast the network-coded signal to both nodes in a same time slot, which can increase the system throughput. In this paper, a new cooperative network error correcting scheme using distributed turbo code in a two-way relay channel is proposed. The proposed scheme not only increases the system throughput using network code but also improves the performance by utilizing the LLR information from relay node and other user node through distributed turbo code. Also, a power allocation scheme is investigated for various channel conditions to improve the system performance.

An Analysis of Existing Studies on Parallel and Distributed Processing of the Rete Algorithm (Rete 알고리즘의 병렬 및 분산 처리에 관한 기존 연구 분석)

  • Kim, Jaehoon
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.7
    • /
    • pp.31-45
    • /
    • 2019
  • The core technologies for intelligent services today are deep learning, that is neural networks, and parallel and distributed processing technologies such as GPU parallel computing and big data. However, for intelligent services and knowledge sharing services through globally shared ontologies in the future, there is a technology that is better than the neural networks for representing and reasoning knowledge. It is a knowledge representation of IF-THEN in RIF or SWRL, which is the standard rule language of the Semantic Web, and can be inferred efficiently using the rete algorithm. However, when the number of rules processed by the rete algorithm running on a single computer is 100,000, its performance becomes very poor with several tens of minutes, and there is an obvious limitation. Therefore, in this paper, we analyze the past and current studies on parallel and distributed processing of rete algorithm, and examine what aspects should be considered to implement an efficient rete algorithm.

AUTOMATIC GENERATION OF BUILDING FOOTPRINTS FROM AIRBORNE LIDAR DATA

  • Lee, Dong-Cheon;Jung, Hyung-Sup;Yom, Jae-Hong;Lim, Sae-Bom;Kim, Jung-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.637-641
    • /
    • 2007
  • Airborne LIDAR (Light Detection and Ranging) technology has reached a degree of the required accuracy in mapping professions, and advanced LIDAR systems are becoming increasingly common in the various fields of application. LiDAR data constitute an excellent source of information for reconstructing the Earth's surface due to capability of rapid and dense 3D spatial data acquisition with high accuracy. However, organizing the LIDAR data and extracting information from the data are difficult tasks because LIDAR data are composed of randomly distributed point clouds and do not provide sufficient semantic information. The main reason for this difficulty in processing LIDAR data is that the data provide only irregularly spaced point coordinates without topological and relational information among the points. This study introduces an efficient and robust method for automatic extraction of building footprints using airborne LIDAR data. The proposed method separates ground and non-ground data based on the histogram analysis and then rearranges the building boundary points using convex hull algorithm to extract building footprints. The method was implemented to LIDAR data of the heavily built-up area. Experimental results showed the feasibility and efficiency of the proposed method for automatic producing building layers of the large scale digital maps and 3D building reconstruction.

  • PDF

Prediction of Global Industrial Water Demand using Machine Learning

  • Panda, Manas Ranjan;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.156-156
    • /
    • 2022
  • Explicitly spatially distributed and reliable data on industrial water demand is very much important for both policy makers and researchers in order to carry a region-specific analysis of water resources management. However, such type of data remains scarce particularly in underdeveloped and developing countries. Current research is limited in using different spatially available socio-economic, climate data and geographical data from different sources in accordance to predict industrial water demand at finer resolution. This study proposes a random forest regression (RFR) model to predict the industrial water demand at 0.50× 0.50 spatial resolution by combining various features extracted from multiple data sources. The dataset used here include National Polar-orbiting Partnership (NPP)/Visible Infrared Imaging Radiometer Suite (VIIRS) night-time light (NTL), Global Power Plant database, AQUASTAT country-wise industrial water use data, Elevation data, Gross Domestic Product (GDP), Road density, Crop land, Population, Precipitation, Temperature, and Aridity. Compared with traditional regression algorithms, RF shows the advantages of high prediction accuracy, not requiring assumptions of a prior probability distribution, and the capacity to analyses variable importance. The final RF model was fitted using the parameter settings of ntree = 300 and mtry = 2. As a result, determinate coefficients value of 0.547 is achieved. The variable importance of the independent variables e.g. night light data, elevation data, GDP and population data used in the training purpose of RF model plays the major role in predicting the industrial water demand.

  • PDF

Key Audit Matters Readability and Investor Reaction

  • CHIRAKOOL, Wichuta;POONPOOL, Nuttavong;WANGCHAROENDATE, Suwan;BHONGCHIRAWATTANA, Utis
    • Journal of Distribution Science
    • /
    • v.20 no.9
    • /
    • pp.73-81
    • /
    • 2022
  • Purpose: This study aimed to examine whether key audit matters (KAMs) readability influences investor reaction. Research design, data, and methodology: The signaling theory was applied to explain the behavior of investors when they receive useful information for their decisions. Data were collected from 1,866 firm-year observations from Thai listed companies in both the Stock Exchange of Thailand (SET) and the Market for Alternative Investment (MAI) for the fiscal years of 2016-2019. The study was based on secondary data, which were collected from the SET Market Analysis and Reporting Tool (SETSMART) database and the Stock Exchange of Thailand's website (www.set.or.th). A statistical regression method was used with panel data analysis to evaluate possible associations between KAMs readability and investor reaction. The study relied on popular readability measures (Fog Index). Moreover, investor reaction was measured by absolute cumulative abnormal return and abnormal trading volume. Results: It was found that the KAMs readability has positive significance on both absolute cumulative abnormal return and abnormal trading volume. Conclusion: This study showed a significant contribution to the implication of KAMs in an emerging economy. The results reveal that more readable KAMs disclosure distributed new insights and useful information to investors and led to reducing the information gap between auditors and investors.

Flood Runoff Analysis using Radar Rainfall and Vflo Model for Namgang Dam Watershed (레이더강우와 Vflo모형을 이용한 남강댐유역 홍수유출해석)

  • Park, Jin-Hyeog;Kang, Boo-Sik;Lee, Geun-Sang;Lee, Eul-Rae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.3
    • /
    • pp.13-21
    • /
    • 2007
  • Recently, very short-term rainfall forecast using radar is required for regional flash flood according to climate change. This research is to evaluate the feasibility of GIS based distributed model using radar rainfall which can express temporal and spatial distribution in actual dam watershed during flood runoff period. Vflo model which was developed Oklahoma university was used as physical based distributed model, and Namgang dam watershed ($2,293km^2$) was applied as study site. Distributed rainfall according to grid resolution was generated by using K-RainVieux, preprocess program of radar rainfall, from JIN radar. Also, GIS hydrological parameters were extracted from basic GIS data such as DEM, land cover and soil map, and used as input data of distributed model(Vflo). Results of this research can provide a base for building of real-time short-term rainfall runoff forecast system according to flash flood in near future.

  • PDF

Interoperability of OpenGIS Component and Spatial Analysis Component (개방형 GIS 컴포넌트에서의 공간분석 컴포넌트 연동)

  • Min, Kyoung-Wook;Jang, In-Sung;Lee, Jong-Hun
    • Journal of Korea Spatial Information System Society
    • /
    • v.3 no.1 s.5
    • /
    • pp.49-62
    • /
    • 2001
  • Recently, component-based software has become main trends in designing and developing computer software products. This component-based software has advantage of the interoperability on distributed computing environment and the reusability of pre-developed components. Also, GIS is designed and implemented with this component-based methodology, called Open GIS Component. OGC(OpenGIS Consortium) have announced various implementation and design specification and topic in GIS. In GIS, Spatial analysis functions like network analysis, TIN analysis are very important function and basically, estimate system functionality and performance using this analysis methods. The simple feature geometry specification is announced by OGC to increase the full interoperability of various spatial data. This specification includes just geometry spatial data model. However, in GIS which manages spatial data, not only geometric data but also topological data and various analysis functions have been used. The performance of GIS depends on how this geometric and topological data is managed well and how various spatial analyses are executed efficiently. So it requires integrated spatial data model between geometry and topology and extended data model of topology for spatial analysis, in case network analysis and TIN analysis in open GIS component. In this paper, we design analysis component like network analysis component and TIN analysis component. To manage topological information for spatial analysis in open GIS component, we design extended data model of simple feature geometry for spatial analysis. In addition to, we design the overall system architecture of open GIS component contained this topology model for spatial analysis.

  • PDF

Design of a Platform for Collecting and Analyzing Agricultural Big Data (농업 빅데이터 수집 및 분석을 위한 플랫폼 설계)

  • Nguyen, Van-Quyet;Nguyen, Sinh Ngoc;Kim, Kyungbaek
    • Journal of Digital Contents Society
    • /
    • v.18 no.1
    • /
    • pp.149-158
    • /
    • 2017
  • Big data have been presenting us with exciting opportunities and challenges in economic development. For instance, in the agriculture sector, mixing up of various agricultural data (e.g., weather data, soil data, etc.), and subsequently analyzing these data deliver valuable and helpful information to farmers and agribusinesses. However, massive data in agriculture are generated in every minute through multiple kinds of devices and services such as sensors and agricultural web markets. It leads to the challenges of big data problem including data collection, data storage, and data analysis. Although some systems have been proposed to address this problem, they are still restricted either in the type of data, the type of storage, or the size of data they can handle. In this paper, we propose a novel design of a platform for collecting and analyzing agricultural big data. The proposed platform supports (1) multiple methods of collecting data from various data sources using Flume and MapReduce; (2) multiple choices of data storage including HDFS, HBase, and Hive; and (3) big data analysis modules with Spark and Hadoop.