• Title/Summary/Keyword: Distortion control

Search Result 891, Processing Time 0.027 seconds

Modified Fold Type Helicone Reflector for Efficient Satellite TT&C Having Variable Coverage Area (가변 커버리지를 갖는 위성 관제용 접이식 헬리콘 반사체 안테나 성능 연구)

  • Lee, Sang-Min;Lee, Woo-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.914-923
    • /
    • 2009
  • Helix antennas have been widely applied to satellite TT&C, data communication and GPS receiver systems onboard military, remote sensing and communication purpose satellites. The helix antennas are known to be convenient to control impedance and radiation coverage characteristics with a maximum directivity in satellite z-axis. Waveguide horn is commonly used for radar system that needs ultra-wideband pulse for exploration ground radar and electromagnetic disability measurement etc. It has high efficiency and low reflection characteristics provided by the low-profile shape and suppressed radiation distortion. In this paper, a waveguide horn structure incorporated with helix antenna design is proposed for satellite applications that require ultra-wideband pulse radar and high rate RF data communication link to ground station over wide coverage area. The main design concern is to synthesize variable beam forming pattern based on modified horn-helix combination helicone structure such that multi-mission antenna is implemented applicable for TT&C, earth observation, high data rate transmission. Waveguide horn helps to reduce the overall antenna structure size by introduction fold type reflector connected to the tapered helix antenna. The next generation KOMPSAT satellite currently under development requires high-performance precision attitude control system. We present an initial design of a hybrid hern-helix antenna structure suitable for efficient RF communication module design of multi-purpose satellite systems.

System Design and Performance Analysis of a Variable Frequency LED Light System for Plant Factory

  • Han, Jae Woong;Kang, Tae Hwan;Lee, Seong Ki;Han, Chung Su;Kim, Woong
    • Journal of Biosystems Engineering
    • /
    • v.39 no.2
    • /
    • pp.87-95
    • /
    • 2014
  • Purpose: The purpose of this study was to design a variable frequency LED light system for plant factory which combined red, blue, green, white, and UV lights and controlled the ratio of the light wavelength. In addition, this study evaluated the performance of each combination of LED to verify the applicability. Methods: Four combinations of LED (i.e. Red+Blue, Red+Blue+Green, Red+Blue+White, Red+Blue+UV) were designed using five types of LED. The system was designed to control the duty ratio of each wavelength of LED by 1% interval from 0~100%, the pulse by 1Hz interval from 1~20kHz. Response characteristics of the control system, spectral distribution of each combination, light uniformity and uniformity ratio were measured to test the performance of the system. Results: Clean waveforms were measured from 10Hz to 10kHz regardless of duty ratio. Frequency distortion was observed within 5% of inflection point at frequencies above 10kHz regardless of duty ratio, but it was judged negligible. Spectra showed a normal distribution, and maximum PPF with duty ratio of 100% was $271.4{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for the Red+Blue combination. PPF of the Red+Blue+Green combination was $258.9{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, and that of the Red+Blue+White combination was $273.9{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. PPF of the Red+Blue+UV combination was $267.7{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Uniformity ratio for the area excepting border showed 0.90 for the Red+Blue and Red+Blue+White combinations, 0.87 for the Red+Blue+Green combination, and 0.88 for the Red+Blue+UV combination. The light was irradiated evenly at the area excepting border, so it was suitable for plant growing. Conclusions: From the results of this study, response characteristics of the control system, spectral distribution of each combination, light uniformity and uniformity ratio were suitable for applying into the plant factory.

Extraction of Individual Trees and Tree Heights for Pinus rigida Forests Using UAV Images (드론 영상을 이용한 리기다소나무림의 개체목 및 수고 추출)

  • Song, Chan;Kim, Sung Yong;Lee, Sun Joo;Jang, Yong Hwan;Lee, Young Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1731-1738
    • /
    • 2021
  • The objective of this study was to extract individual trees and tree heights using UAV drone images. The study site was Gongju national university experiment forest, located in Yesan-gun, Chungcheongnam-do. The thinning intensity study sites consisted of 40% thinning, 20% thinning, 10% thinning and control. The image was filmed by using the "Mavic Pro 2" model of DJI company, and the altitude of the photo shoot was set at 80% of the overlay between 180m pictures. In order to prevent image distortion, a ground reference point was installed and the end lap and side lap were set to 80%. Tree heights were extracted using Digital Surface Model (DSM) and Digital Terrain Model (DTM), and individual trees were split and extracted using object-based analysis. As a result of individual tree extraction, thinning 40% stands showed the highest extraction rate of 109.1%, while thinning 20% showed 87.1%, thinning 10% showed 63.5%, and control sites showed 56.0% of accuracy. As a result of tree height extraction, thinning 40% showed 1.43m error compared with field survey data, while thinning 20% showed 1.73 m, thinning 10% showed 1.88 m, and control sites showed the largest error of 2.22 m.

Design of EMI reduction of Electric Vehicle Wireless Power Transfer Wireless Charging Control Module with Power Integrity and Signal Integrity (전원무결성과 신호무결성을 갖는 전기차 무선전력전송 무선충전컨트롤모듈 EMI 저감 설계)

  • Hong, Seungmo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.6
    • /
    • pp.452-460
    • /
    • 2021
  • As the global electric vehicle (EV) market expands, eco-friendly EV that complement performance and safety problems continue to be released and the market is growing. However, in the case of EVs, the inconvenience of charging, safety problems such as electric shock, and electromagnetic interference (EMI) problems caused by the interlocking of various electronic components are problems that must be solved in EVs. The use of wireless power transmission technology can solve the problem of safety by not dealing with high current and high voltage directly and solving the inconvenience of charging EVs. In this paper, in order to reduce EMI a wireless charging control module, which is a key electronic component of WPT of EV. EMI reduction was designed through simulation of problems such as resonance and impedance that may occur in the power supply and signal distortion between high-speed communication that may occur in the signal part. Therefore, through the EMI reduction design with power integrity and signal integrity, the WPT wireless charging control module for electric vehicles reduces 10 dBu V/m and 15 dBu V/m, respectively, in 800 MHz to 1 GHz bands and 1.5 GHz bnad.

3D Accuracy Analysis of Mobile Phone-based Stereo Images (모바일폰 기반 스테레오 영상에서 산출된 3차원 정보의 정확도 분석)

  • Ahn, Heeran;Kim, Jae-In;Kim, Taejung
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.677-686
    • /
    • 2014
  • This paper analyzes the 3D accuracy of stereo images captured from a mobile phone. For 3D accuracy evaluation, we have compared the accuracy result according to the amount of the convergence angle. In order to calculate the 3D model space coordinate of control points, we perform inner orientation, distortion correction and image geometry estimation. And the quantitative 3D accuracy was evaluated by transforming the 3D model space coordinate into the 3D object space coordinate. The result showed that relatively precise 3D information is generated in more than $17^{\circ}$ convergence angle. Consequently, it is necessary to set up stereo model structure consisting adequate convergence angle as an measurement distance and a baseline distance for accurate 3D information generation. It is expected that the result would be used to stereoscopic 3D contents and 3D reconstruction from images captured by a mobile phone camera.

Error Concealment of MPEG-2 Intra Frames by Spatiotemporal Information of Inter Frames (인터 프레임의 시공간적 정보를 이용한 MPEG-2 인트라 프레임의 오류 은닉)

  • Kang, Min-Jung;Ryu, Chul
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.2
    • /
    • pp.31-39
    • /
    • 2003
  • The MPEG-2 source coding algorithm is very sensitive to transmission errors due to using of variable-length coding. When the compressed data are transmitted, transmission errors are generated and error correction scheme is not able to be corrected well them. In the decoder error concealment (EC) techniques must be used to conceal errors and it is able to minimize degradation of video quality. The proposed algorithm is method to conceal successive macroblock errors of I-frame and utilize temporal information of B-frame and spatial information of P-frame In the previous GOP which is temporally the nearest location to I-frame. This method can improve motion distortion and blurring by temporal and spatial errors which cause at existing error concealment techniques. In network where the violent transmission errors occur, we can conceal more efficiently severe slice errors. This algorithm is Peformed in MPEG-2 video codec and Prove that we can conceal efficiently slice errors of I-frame compared with other approaches by simulations.

  • PDF

The Analysis of the Airplane Flutter on Low Band Television Broadcasting Signal

  • Wonggeeratikun, A.;Noppanakeepong, S.;Leelaruji, N.;Hemmakorn, N.;Moriya, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1648-1653
    • /
    • 2003
  • The paper studies effect of quasi-periodic or airplane flutter phenomenon on television broadcasting signal. Airplane flutter is a very important problem. It causes the receiving antenna to receive both direct signal by the Tx (Transmitter antenna) and reflected signal scattered by the airplane with phase delay. The sum of two signals results in fading, sometime collapse and distortion of picture on TV screen. We performed measurement and modeling this phenomenon on TV signal when the airplane flew across and range Tx and Rx (Receiver antenna). The frequency 60.75MHz (Aural frequency of CH3) is used under tests. A single scatter multipath model is introduced. It is used to duplicate some of the measured data and show the dependence of power variation on the airplane fluttering. The fluctuation of the airplane flutter phenomenon was calculated to be around 2-4dB. The Yaki antenna is used for improving airplane flutter problem because it can make high gain and high directivity.

  • PDF

On a Pitch Alteration Method by Time-axis Scaling Compensated with the Spectrum for High Quality Speech Synthesis (고음질 합성용 스펙트럼 보상된 시간축조절 피치 변경법)

  • Bae, Myung-Jin;Lee, Won-Cheol;Im, Sung-Bin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.89-95
    • /
    • 1995
  • The waveform coding technique has concerned with simply preserving the waveform shape of speech signal through a redundancy reduction process. In the case of speech synthesis, the waveform coding with high sound quality is mainly used to the synthesis by analysis. However, since the parameters of this coding are not classified into either excitation or vocal tract parameters, it is difficult to applying the waveform coding to the synthesis by rule. In order to apply the waveform coding to the synthesis by rule, the pitch alteration technique is required in prosody control. In this paper, we propose a new pitch alteration method that can change the pitch period in waveform coding by scaling the time-axis and compensating the spectrum. This is relevant to the time-frequency domain method were the phase components of the waveform is preserved with a little spectrum distortion of 2.5 % and less for 50% pitch change.

  • PDF

Analysis of the Mechanism of Longitudinal Bending Deformation Due to Welding in a Steel Plate by Using a Numerical Model (수치해석모델을 이용한 강판재의 종굽힘 용접변형 생성기구의 해석)

  • Kim, Yong Rae;Yan, Jieshen;Song, Gyu Yeong;Kim, Jae-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.1
    • /
    • pp.49-55
    • /
    • 2017
  • Welding deformation is a permanent deformation that is caused in structures by welding heat. Welding distortion is the primary cause of reduced productivity, due to welded structural strength degradation, low dimensional accuracy, and appearance. As a result, research and numerous experiments are being carried out to control welding deformation. The aim of this study is to analyze the mechanism of longitudinal bending deformation due to welding. Welding experiments and numerical analyses were performed for this study. The welding experiments were performed on 4 mm and 8.5 mm thickness steel plates, and the numerical analysis was conducted on the welding deformation using the FE software MSC.marc.

High-Capacity Robust Image Steganography via Adversarial Network

  • Chen, Beijing;Wang, Jiaxin;Chen, Yingyue;Jin, Zilong;Shim, Hiuk Jae;Shi, Yun-Qing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.366-381
    • /
    • 2020
  • Steganography has been successfully employed in various applications, e.g., copyright control of materials, smart identity cards, video error correction during transmission, etc. Deep learning-based steganography models can hide information adaptively through network learning, and they draw much more attention. However, the capacity, security, and robustness of the existing deep learning-based steganography models are still not fully satisfactory. In this paper, three models for different cases, i.e., a basic model, a secure model, a secure and robust model, have been proposed for different cases. In the basic model, the functions of high-capacity secret information hiding and extraction have been realized through an encoding network and a decoding network respectively. The high-capacity steganography is implemented by hiding a secret image into a carrier image having the same resolution with the help of concat operations, InceptionBlock and convolutional layers. Moreover, the secret image is hidden into the channel B of carrier image only to resolve the problem of color distortion. In the secure model, to enhance the security of the basic model, a steganalysis network has been added into the basic model to form an adversarial network. In the secure and robust model, an attack network has been inserted into the secure model to improve its robustness further. The experimental results have demonstrated that the proposed secure model and the secure and robust model have an overall better performance than some existing high-capacity deep learning-based steganography models. The secure model performs best in invisibility and security. The secure and robust model is the most robust against some attacks.