In this paper, a method for designing an optimal weight function for the weighted cepstral distance measure is proposed. A conventional weight function or cepstral lifter is obtained eperimentally depending on the spectral components to be emphasized. The proposed method minimizes the error between word reference patterns and the traning data. To compare the proposed optimal weight function with conventional function, speech recognition systems based on Dpynamic Time Warping and Hidden Markov Models were constructed to conduct speaker independent isolated word necogination eperiment. Results show that the proposed method gives better performance than conventional weight functions.
Communications for Statistical Applications and Methods
/
제7권2호
/
pp.371-383
/
2000
Lindsay (1994) and Basu et al (1997) show that another density-based distance called the negative exponential disparity (NED) is an excellent competitor to the Hellinger distance (HD) in generating an asymptotically fully efficient and robust estimator. Bhattacharya and Basu (1996) consider estimation of the locations of several normal populations when an order relation between them is known to be true. They empirically show that the robust HD based weighted likelihood estimators compare favorably with the M-estimators based on Huber's $\psi$ function, the Gastworth estimator, and the trimmed mean estimator. In this paper we investigate the performance of the weighted likelihood estimator based on the NED as a robust alternative relative to that based on the HD. The NED based estimator is found to be quite competitive in the settings considered by Bhattacharya and Basu.
HCNN(Hidden Control Neural Network)은 신경회로망에 의한 비선형 예측과 HMM의 segmentation 기능을 접합시킨 신경회로망 모델로서, 시간에 따라 입출력 사상 함수를 변화시킴으로써 음성 신호를 잘 모델링할 수 있도록 되어 있다. 본 논물에서는 첫째, HCNN의 성능이 HMM보다 우수함을 보이고, 둘째로, HCNN에서의 예측 오차 측정에 적절한 거리 측도를 이용하기 위해 가중거리가 도입된 HCNN을 제안하여, 화자 독립 음성 인식에 있어 그 성능이 우수함을 보였다. 여기서 가중거리는 음성 특징 벡터 각 구성 성분의 분산도 차이를 고려한 거리이다. 화자 독립 숫자음 인식 실험 결과, 유클리드 저리를 이용한 HCNN에 대해 95%의 인식율을 얻었는데, 이는 HMM에 비해 1.28% 높은 결과로서, 확률적인 제한이 가해진 HMM에 비해 시스템의 동작인 모델링을 이용한 HCNN이 더 우수함을 알 수 있다. 또한 가중거리를 이용한 CNN에 대해서는 97.35%의 인식율을 얻었는데, 이는 유클리드 거리를 이용한HCNN에 비해 2.3%가 향상된 결과이다. 가중 거리를 도입한 HCHN의 경우에 더 높은 인식율을 얻은 이유는, 오인식이 많이 되는 화자의 인식율을 높임으로써 화자간의 인식율차가 감소하게 되기 때문임을 알 수 있었고, 따라서 화자 독립 음성인식에 가중거리를 도입한 HCNN이 보다 적합합을 알 수 있다.
In this paper, we propose a high-quality stitching method of 3D multiple dental CT images. First, a weighted function is generated using the difference of two distance functions that calculate a distance from the nearest edge of an overlapped region to each position. And a blending ratio propagation function for two gradient vectors is parameterized by the difference and magnitude of gradient vectors that is also applied by the weighted function. When the blending ratio is propagated, an improved region growing scheme is proposed to decide the next position and calculate the blending intensity. The proposed method produces a high-quality stitching image. Our method removes the seam artifact caused by the mean intensity difference between images and vignetting effect. And it removes double edges caused by local misalignment. Experimental results showed that the proposed method produced high-quality stitching images for ten patients. Our stitching method could be usefully applied into the stitching of 3D or 2D multiple images.
In this paper, after we got to realized FDNN (fuzzy decision neural network) applied the quantization triangularity fuzzy function to DBNN(decision based neural network) of a hierarchical structure for image process, we could esign hardware of the realized FDNN. Also it is normalized the standard image and the input image as the same size. We are applied DWW algorithm which selected the closest value with finding similarity of an interval image by this distance to FDNN. So we could calulated in terms of distance to weight of pixel which composed two image and eliminated the nise of image, minimized the lost of information, obtained the optimal information. It is designed hardware of high speed weighted FDNN using COMPASS tool. Aslo, the total circuit is realized as gates of 61,000 and could show to superiority of FDNN using the simulation.
We prove some sharp extremal distance results for functions in various spaces of analytic functions on bounded strictly pseudoconvex domains with smooth boundary. Also, we obtain atomic decompositions in multifunctional Bloch and weighted Bergman spaces of analytic functions on strictly pseudoconvex domains with smooth boundary, which extend known results in the classical case of a single function.
This paper deals with the robustness properties of the minimum disparity estimation in linear regression models. The estimators defined as statistical quantities whcih minimize the blended weight Hellinger distance between a weighted kernel density estimator of the residuals and a smoothed model density of the residuals. It is shown that if the weights of the density estimator are appropriately chosen, the estimates of the regression parameters are robust.
본 논문은 함수 변환(Function Transform)과 FFT(Fast Fourier Transform)를 사용하는 새로운 XML 문서 클리스터링 기법에 대하여 논한다. 본 문서 클러스터링 기법은 조정자 없이 점진적으로 수행된다. XML 문서는 엘리먼트의 계층적인 구조에 기반하여 이산 함수로 변환된다. 이산 함수는 FFT를 사용하여 벡터로 변환된다. 문서를 나타내는 벡터는 가중치 유클리디안 거리 메트릭을 사용하여 비교된다. 비교 결과가 미리 정의된 값보다 작을 때에는 비교되는 두 개의 문서는 구조적으로 비슷한 것으로 간주되어 동일한 그룹으로 분류된다. XML 문서 클리스터링은 XML 문서의 저장과 검색에 유용하게 사용될 수 있다. 800개의 합서 문서와 520개의 실제 문서를 사용하여 실험하였다. 실험 결과는 함수변환과 FFT는 XML 문서를 엘리먼트의 구조를 기반으로 하여 점진적으로 조정자 없이 효과적으로 분류하는 것을 보여주었다.
본 논문은 에너지 검출 기반 협력 스펙트럼 센싱을 이용하여 주사용자와 부사용자 사이의 거리에 따른 검출 확률에 가중치를 부여하는 기법을 제안하고, 이에 따른 분석 및 모의실험 결과를 나타낸다. 주사용자와 부사용자 사이의 거리는 모두 다르다고 가정하였고, 이들 사이의 무선 채널은 레일레이(Rayleigh) 채널로 모델링하였다. 제안하는 가중치 부여 기법을 적용한 협력 스펙트럼 센싱을 수행한 결과가 가중치를 적용하지 않은 스펙트럼 센싱을 수행한 결과에 비해 커버리지를 확대 할 수 있고, 이 검출 확률에 가중치를 적용한 것이 가중치를 적용하지 않은 이전의 방식에 비해 센싱 효율이 향상 되는 것을 알 수 있었다.
This paper presents the performance and problems in analysis method and testing system of Electronic Speckle Pattern Interferometry (ESPI) method, in measuring two - dimensional in-plane displacement. The anyalysis result of measurement by ESPE is quite comparable to that tof measurement by strain gauge method. This implies that the method of ESPE is a very effective tool in non-contact two-dimensional in-plane strain analysis. But there is a controversal point, measurment error. This error is discussed to be affected not by ESPE method itself, but by its analysis scheme of the interference fringe, where the first-order interpolation has been applied to the points of strain measured. In this case, it is turned out that the more errors would be occurred in the large interval of fringe. And so this paper describes a computer method for drawing when the height is available only for some arbitrary collection of points. The method is based on a distance-weighted, last- squares approximation technique with the weight varying with the distance of the data points.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.