• Title/Summary/Keyword: Distance of devices

Search Result 662, Processing Time 0.023 seconds

Speedy Two-Step Thermal Evaporation Process for Gold Electrode in a Perovskite Solar Cell

  • Kim, Kwangbae;Park, Taeyeul;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.235-240
    • /
    • 2018
  • We propose a speedy two-step deposit process to form an Au electrode on hole transport layer(HTL) without any damage using a general thermal evaporator in a perovskite solar cell(PSC). An Au electrode with a thickness of 70 nm was prepared with one-step and two-step processes using a general thermal evaporator with a 30 cm source-substrate distance and $6.0{\times}10^{-6}$ torr vacuum. The one-step process deposits the Au film with the desirable thickness through a source power of 60 and 100 W at a time. The two-step process deposits a 7 nm-thick buffer layer with source power of 60, 70, and 80 W, and then deposits the remaining film thickness at higher source power of 80, 90, and 100 W. The photovoltaic properties and microstructure of these PSC devices with a glass/FTO/$TiO_2$/perovskite/HTL/Au electrode were measured by a solar simulator and field emission scanning electron microscope. The one-step process showed a low depo-temperature of $88.5^{\circ}C$ with a long deposition time of 90 minutes at 60 W. It showed a high depo-temperature of $135.4^{\circ}C$ with a short deposition time of 8 minutes at 100 W. All the samples showed an ECE lower than 2.8 % due to damage on the HTL. The two-step process offered an ECE higher than 6.25 % without HTL damage through a deposition temperature lower than $88^{\circ}C$ and a short deposition time within 20 minutes in general. Therefore, the proposed two-step process is favorable to produce an Au electrode layer for the PSC device with a general thermal evaporator.

Development of Highly Reliable Power and Communication System for Essential Instruments Under Severe Accidents in NPP

  • Choi, Bo Hwan;Jang, Gi Chan;Shin, Sung Min;Lee, Soo Ill;Kang, Hyun Gook;Rim, Chun Taek
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1206-1218
    • /
    • 2016
  • This article proposes a highly reliable power and communication system that guarantees the protection of essential instruments in a nuclear power plant under a severe accident. Both power and communication lines are established with not only conventional wired channels, but also the proposed wireless channels for emergency reserve. An inductive power transfer system is selected due to its robust power transfer characteristics under high temperature, high pressure, and highly humid environments with a large amount of scattered debris after a severe accident. A thermal insulation box and a glass-fiber reinforced plastic box are proposed to protect the essential instruments, including vulnerable electronic circuits, from extremely high temperatures of up to $627^{\circ}C$ and pressure of up to 5 bar. The proposed wireless power and communication system is experimentally verified by an inductive power transfer system prototype having a dipole coil structure and prototype Zigbee modules over a 7-m distance, where both the thermal insulation box and the glass-fiber reinforced plastic box are fabricated and tested using a high-temperature chamber. Moreover, an experiment on the effects of a high radiation environment on various electronic devices is conducted based on the radiation test having a maximum accumulated dose of 27 Mrad.

A Study on the Application of Phase Change Material for Electric Vehicle Battery Thermal Management System using Dymola (전기자동차 배터리팩 열관리시스템에서 상변화물질 적용에 관한 고찰)

  • Choi, Chulyoung;Choi, Woongchul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1889-1894
    • /
    • 2017
  • Global automobile manufacturers are developing electric vehicles (EVs) to eliminate the pollutant emissions from internal combustion vehicles and to minimize fossil fuel consumptions for the future generations. However, EVs have a disadvantage of shorter traveling distance than that of conventional vehicles. To answer this shortfall, more batteries are installed in the EV to satisfy the consumer expectation for the driving range. However, as the energy capacity of the battery mounted in the EV increases, the amount of heat generated by each cell also increases. Naturally, a better battery thermal management system (BTMS) is required to control the temperature of the cells efficiently because the appropriate thermal environment of the cells greatly affects the power output from the battery pack. Typically, the BTMS is divided into an active and a passive system depending on the energy usage of the thermal management system. Heat exchange materials usually include gas and liquid, semiconductor devices and phase change material (PCM). In this study, an application of PCM for a BTMS was investigated to maintain an optimal battery operating temperature range by utilizing characteristics of a PCM, which can accumulate large amounts of latent heat. The system was modeled using Dymola from Dassault Systems, a multi-physics simulation tool. In order to compare the relative performance, the BTMS with the PCM and without the PCM were modeled and the same battery charge/discharge scenarios were simulated. Number of analysis were conducted to compare the battery cooling performance between the model with the aluminum case and PCM and the model with the aluminum case only.

Consequence Analysis of Toxic Gases Generated by Fire of Lithium Ion Batteries in Electric Vehicles (전기자동차 내 리튬이온전지 화재로 발생하는 독성가스의 위험성 분석)

  • Oh, Eui-young;Min, Dong Seok;Han, Ji Yun;Jung, Seungho;Kang, Tae-sun
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.1
    • /
    • pp.54-61
    • /
    • 2019
  • As the market for portable electronic devices expands, the demand for Lithium Ion Battery (LIB) is also increasing. LIB has higher efficiency than other secondary batteries, but there is a risk of explosion / fire due to thermal runaway reaction. Especially, Electric Vehicles (EV) equipped with a large capacity LIB cell also has a danger due to a large amount of toxic gas generated by a fire. Therefore, it is necessary to analyze the risk of toxic gas generated by EV fire to minimize accident damage. In this study, the flow of toxic gas generated by EV fire was numerically analyzed using Computational Fluid Dynamic. Scenarios were established based on literature data and EV data to confirm the effect distance according to time and exposure standard. The purpose of this study is to analyze the risk of toxic gas caused by EV fire and to help minimize the loss of life and property caused by accidents.

Combined Effect of Catholyte Gap and Cell Voltage on Syngas Ratio in Continuous CO2/H2O Co-electrolysis

  • Ha, Min Gwan;Na, Youngseung;Park, Hee Young;Kim, Hyoung-Juhn;Song, Juhun;Yoo, Sung Jong;Kim, Yong-Tae;Park, Hyun S.;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.406-414
    • /
    • 2021
  • Electrochemical devices are constructed for continuous syngas (CO + H2) production with controlled selectivity between CO2 and proton reduction reactions. The ratio of CO to H2, or the faradaic efficiency toward CO generation, was mechanically manipulated by adjusting the space volume between the cathode and the polymer gas separator in the device. In particular, the area added between the cathode and the ion-conducting polymer using 0.5 M KHCO3 catholyte regulated the solution acidity and proton reduction kinetics in the flow cell. The faradaic efficiency of CO production was controlled as a function of the distance between the polymer separator and cathode in addition to that manipulated by the electrode potential. Further, the electrochemical CO2 reduction device using Au NPs presented a stable operation for more than 23 h at different H2:CO production levels, demonstrating the functional stability of the flow cell utilizing the mechanical variable as an important operational factor.

Magnetic Resonant Wireless Power Transfer with L-Shape Arranged Resonators for Laptop Computer

  • Choi, Jung Han;Kang, Seok Hyon;Jung, Chang Won
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.126-132
    • /
    • 2017
  • In this study, we designed, measured, and analyzed a rearranged L-shape magnetic resonance coupling wireless power transfer (MR-WPT) system for practical applications with laptops. The typical four resonator MR-WPT (Tx part: source loop and Tx coil; Rx part: Rx coil and load loop) is difficult to apply to small-sized stationary and mobile applications, such as laptop computers, tablet-PCs, and smartphones, owing to the large volume of the Rx part and the spatial restrictions of the Tx and Rx coils. Therefore, an L-shape structure, which is the orthogonal arrangement of the Tx and Rx parts, is proposed for indoor environment applications, such as at an L-shaped wall or desk. The relatively large Tx part and Rx coil can be installed in the wall and the desk, respectively, while the load loop is embedded in the small stationary or mobile devices. The transfer efficiency (TE) of the proposed system was measured according to the transfer distance (TD) and the misaligned locations of the load loop. In addition, we measured the TE in the active/non-active state and monitor-open/closed state of the laptop computer. The overall highest TE of the L-shape MR-WPT was 61.43% at 45 cm TD, and the TE decreased to 27.9% in the active and monitor-open state of the laptop computer. The conductive ground plane has a much higher impact on the performance when compared to the impact of the active/non-active states. We verified the characteristics and practical benefits of the proposed L-shape MR-WPT compared to the typical MR-WPT for applications to L-shaped corners.

The Analysis on the Traces of Short Pass Behavior on Lawn Fields in Urban Parks (도시공원내 잔디밭 가로지르기 흔적 분석)

  • 노재현;강인애
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.1
    • /
    • pp.33-46
    • /
    • 2004
  • This study is aimed to redesign established parks and to propose a series of devices protecting them from vandalism. To solve the problems, we ascertained the damaged areas of the park greens. The trace analysis was performed to grasp the transverse inside the parks of Jeonju and Iksan in Collabuldo. Then, we presented the basic plan for minimizing park damage and for remodeling the system of movement. The results of the study are summarized as follows: it is identified that the transverse phenomenon is considerably wide-spread in majority of parks, and has no relationship to the park area or the green area. It is considered that the $\ulcorner$Condition rating class$\lrcorner$ of grass damage, which is grade 6, is extraordinarily high and the damage is accumulated considerably. Also, the damage part of other grade is discovered equally, and when unattended, the acceleration of damage is positive. A damage width a 0.5∼1.5m makes up the greater part of 79.6%. It also constitutes most of a rectilinear form. The difference in the height between the original point and destination point is below 0.7m, which is above 70%. It is identified that the interrelationship between the damage continuation length and plan distance is relatively high by the simple regression: analysis and by Pearson' correlation analysis. In spite of the normal damage continuation length is 20m, the frequency degree is downward with extreme point at 10m. Accordingly, it is assumed that park users have physical and psychological pressure when they cross the lawn field. Damage types are classified as the Simple cut cross type, the Behavioral facilitates type, Access advantage type and the Strolling type through type classification. It is considered that this classification is effective when identifying short pass type on lawn field according to the damage length and intensity.

A Digital Device-Based Method for Quantifying Motor Impairment in Movement Disorders (디지털 디바이스를 이용한 이상운동증에서의 운동손상 정량화 방법)

  • Bae, Suhan;Yun, Daeun;Ha, Jaekyung;Gwon, Daeun;Kim, Young Goo;Ahn, Minkyu
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.247-255
    • /
    • 2020
  • Accurate diagnosis of movement disorders is important for providing right patient care at right time. In general, assessment of motor impairment relies on clinical ratings conducted by experienced clinicians. However, this may introduce subjective opinions into scoring the severity of motor impairment. Digital devices such as table PC and smart band with accelerometer can be used for more accurate and objective assessment and possibly helpful for clinicians to make right decision of patient's states. In this study, we introduce quantification algorithms of motor impairment which uses the digital data acquired during four clinical motor tests (Line drawing, Spiral drawing, Nose to finger and Hand flip tests). The step by step procedure of quantifying metrics (Tremor Frequency, Tremor Magnitude, Error Distance, Time, Velocity, Count and Period) are provided with flowchart. The effectiveness of the proposed algorithm is presented with the result from simulated data (normal, normal with tremor and slowness, poor with tremor, poor with tremor and slowness).

Dynamic Generation Methods of the Wireless Map Database using Generalization and Filtering (Generalization과 Filtering을 이용한 무선 지도 데이터베이스의 동적 생성 기법)

  • Kim, Mi-Ran;Choe, Jin-O
    • The KIPS Transactions:PartD
    • /
    • v.8D no.4
    • /
    • pp.367-376
    • /
    • 2001
  • For the electronic map service by wireless, the existing map database cannot be used directly. This is because, the data volume of a map is too big to transfer by wireless and although the map is transferred successfully, the devices to display the map usually don’t have enough resources as the ones for desktop computers. It is also not acceptable to construct map database for the exclusive use of wireless service because of the vast cost. We propose new technique to generate a map for wireless service dynamically, from the existing map database. This technique includes the generalization method to reduce the map data volume and filtering method to guarantee that the data volume don’t exceed the limit of bandwidth. The generalization is performed in 3 steps :ㅁ step of merging the layers, a step of reducing the size of spatial objects, and a step of processing user interface. The filtering is performed by 2 module, counter and selector module. The counter module checks whether the data blume of generated map by generalization, exceeds the bandwidth limit. The selector module eliminates the excess objects and selects the rest, on the basis of distance.

  • PDF

Determinants of Safety and Satisfaction with In-Vehicle Voice Interaction : With a Focus of Agent Persona and UX Components (자동차 음성인식 인터랙션의 안전감과 만족도 인식 영향 요인 : 에이전트 퍼소나와 사용자 경험 속성을 중심으로)

  • Kim, Ji-hyun;Lee, Ka-hyun;Choi, Jun-ho
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.8
    • /
    • pp.573-585
    • /
    • 2018
  • Services for navigation and entertainment through AI-based voice user interface devices are becoming popular in the connected car system. Given the classification of VUI agent developers as IT companies and automakers, this study explores attributes of agent persona and user experience that impact the driver's perceived safety and satisfaction. Participants of a car simulator experiment performed entertainment and navigation tasks, and evaluated the perceived safety and satisfaction. Results of regression analysis showed that credibility of the agent developer, warmth and attractiveness of agent persona, and efficiency and care of the UX dimension showed significant impact on the perceived safety. The determinants of perceived satisfaction were unity of auto-agent makers and gender as predisposing factors, distance in the agent persona, and convenience, efficiency, ease of use, and care in the UX dimension. The contributions of this study lie in the discovery of the factors required for developing conversational VUI into the autonomous driving environment.