• Title/Summary/Keyword: Distance errors

Search Result 681, Processing Time 0.028 seconds

DTM GENERATION OF RADARSAT AND SPOT SATELLITE IMAGERY USING GROUND CONTROL POINTS EXTRACTED FROM SAR IMAGE

  • PARK DOO-YOUL;KIM JIN-KWANG;LEE HO-NAM;WON JOONG-SUN
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.667-670
    • /
    • 2005
  • Ground control points(GCPs) can be extracted from SAR data given precise orbit for DTM generation using optic images and other SAR data. In this study, we extract GCPs from ERS SAR data and SRTM DEM. Although it is very difficult to identify GCPs in ERS SAR image, the geometry of optic image and other SAR data are able to be corrected and more precise DTM can be constructed from stereo optic images. Twenty GCPs were obtained from the ERS SAR data with precise Delft orbit information. After the correction was applied, the mean values of planimetric distance errors of the GCPs were 3.7m, 12.1 and -0.8m with standard deviations of 19.9m, 18.1, and 7.8m in geocentric X, Y, and Z coordinates, respectively. The geometries of SPOT stereo pair were corrected by 13 GCPs, and r.m.s. errors were 405m, 705m and 8.6m in northing, easting and height direction, respectively. And the geometries of RADARS AT stereo pair were corrected by 12 GCPs, and r.m.s. errors were 804m, 7.9m and 6.9m in northing, easting and height direction, respectively. DTMs, through a method of area based matching with pyramid images, were generated by SPOT stereo images and RADARS AT stereo images. Comparison between points of the obtained DTMs and points estimated from a national 1 :5,000 digital map was performed. For DTM by SPOT stereo images, the mean values of distance errors in northing, easting and height direction were respectively -7.6m, 9.6m and -3.1m with standard deviations of 9.1m, 12.0m and 9.1m. For DTM by RADARSAT stereo images, the mean values of distance errors in northing, easting and height direction were respectively -7.6m, 9.6m and -3.1m with standard deviations of 9.1m, 12.0m and 9.1m. These results met the accuracy of DTED level 2

  • PDF

Improving the Gravity Model for Feasibility Studies in the Cultural and Tourism Sector (문화·관광부문 타당성조사를 위한 중력모형의 개선방안)

  • Hae-Jin Lee
    • Asia-Pacific Journal of Business
    • /
    • v.15 no.1
    • /
    • pp.319-334
    • /
    • 2024
  • Purpose - The purpose of this study is to examine the gravity model commonly used for demand forecasting upon the implementation of new tourist facilities and analyze the main causation of forecasting errors to provide a suggestion on how to improve. Design/methodology/approach - This study first measured the errors in predicted values derived from past feasibility study reports by examining the cases of five national science museums. Next, to improve the predictive accuracy of the gravity model, the study identified the five most likely issues contributing to errors, applied modified values, and recalculated. The potential for improvement was then evaluated through a comparison of forecasting errors. Findings - First, among the five science museums with very similar characteristics, there was no clear indication of a decrease in the number of visitors to existing facilities due to the introduction of new facilities. Second, representing the attractiveness of tourist facilities using the facility size ratio can lead to significant prediction errors. Third, the impact of distance on demand can vary depending on the characteristics of the facility and the conditions of the area where the facility is located. Fourth, if the distance value is below 1, it is necessary to limit the range of that value to avoid having an excessively small value. Fifth, depending on the type of population data used, prediction results may vary, so it is necessary to use population data suitable for each latent market instead of simply using overall population data. Finally, if a clear trend is anticipated in a certain type of tourist behavior, incorporating this trend into the predicted values could help reduce prediction errors. Research implications or Originality - This study identified the key factors causing prediction errors by using national science museums as cases and proposed directions for improvement. Additionally, suggestions were made to apply the model more flexibly to enhance predictive accuracy. Since reducing prediction errors contributes to increased reliability of analytical results, the findings of this study are expected to contribute to policy decisions handled with more accurate information when running feasibility analyses.

Extrinsic calibration using a multi-view camera (멀티뷰 카메라를 사용한 외부 카메라 보정)

  • 김기영;김세환;박종일;우운택
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.187-190
    • /
    • 2003
  • In this paper, we propose an extrinsic calibration method for a multi-view camera to get an optimal pose in 3D space. Conventional calibration algorithms do not guarantee the calibration accuracy at a mid/long distance because pixel errors increase as the distance between camera and pattern goes far. To compensate for the calibration errors, firstly, we apply the Tsai's algorithm to each lens so that we obtain initial extrinsic parameters Then, we estimate extrinsic parameters by using distance vectors obtained from structural cues of a multi-view camera. After we get the estimated extrinsic parameters of each lens, we carry out a non-linear optimization using the relationship between camera coordinate and world coordinate iteratively. The optimal camera parameters can be used in generating 3D panoramic virtual environment and supporting AR applications.

  • PDF

The Influence of Eccentric Error in Horizontal Angle Measurement (수평각관측에 있어서 구심오차가 관측치에 미치는 영향)

  • 이계학
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.9 no.1
    • /
    • pp.55-61
    • /
    • 1991
  • The accidential errors of horizontal angles are influenced by sighting, reading and eccentric errors etc. This paper deals with the influence of eccentric error by the formula of theory and evaluation, and actually testing measurement. The results show that the eccentric error is calculated through the sighting distance, observed angle, eccentric distance and angle. And then, three repeating method is of practical use, and also, eccentric error is able to evaluate through the sighting distance and observed angle in according to performance of each instrument.

  • PDF

A Study on LED Distance Recognition Measure Using Distance Measurement Correction Algorithm (거리계산 보정 알고리즘을 이용한 LED 거리 인식 측정에 관한 연구)

  • Kim, Ji-Seong;Jung, Dae-Chul;Kim, Yong-Kab
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.63-68
    • /
    • 2017
  • In this paper, Distance recognition measurement using distance calculation correction algorithm, was realization through LED dimming control. The calculation values for the RSSI average filtering and the RSSI feedback filtering were calculated and applied to reduce the error of the RSSI value measured from a long distance. It was confirmed that the RSSI values through the average filtering and the RSSI values measured by setting the coefficient value of the feedback filtering to 0.5 were ranged from -61 dBm to - 52.5 dBm, which shows irregular and high values decrease slightly as much as about -2 dBm to -6 dBm as compared to general measurements. A distance calculation correction algorithm to improve the accuracy was applied, which confirmed that as the distance increases, the range of errors decreases. In conclusion, unstable signals were corrected using the RSSI measurement result filtering, and the distance calculation correction algorithm was applied and performed to reduce the range of errors. In addition, RGB colors were implemented by LED to indicate the distance determination and the signal stability.

Cosmological constraints using BAO - From spectroscopic to photometric catalogues

  • Sridhar, Srivatsan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.56.2-56.2
    • /
    • 2019
  • Measurement of the location of the baryon acoustic oscillation (BAO) feature in the clustering of galaxies has proven to be a robust and precise method to measure the expansion of the Universe. The best constraints so far have been provided from spectroscopic surveys because the errors on the redshift obtained from spectroscopy are minimal. This in turn means that the errors along the line-of-sight are reduced and so one can expect constraints on both angular diameter distance $D_A$ and expansion rate $H^{-1}$. But, future surveys will probe a larger part of the sky and go to deeper redshifts, which correspond to more number of galaxies. Analysing each galaxy using spectroscopy, which is a time consuming task, will not be practically possible. So, photometry will be the most convenient way to measure redshifts for future surveys such as LSST, Euclid, etc. The advantage of photometry is measuring the redshift of vast number of galaxies in a single exposure, but the disadvantage are the errors associated with the measured redshifts. Using a wedge approach, wherein the clustering is split into different wedges along the line-of-sight ${\pi}$ and across the line-of-sight ${\sigma}$, we show that the BAO information can be recovered even for photometric catalogues with errors along the line-of-sight. This means that we can get cosmological distance constraints even if we don't have spectroscopic information.

  • PDF

A Study on the Compensation Algorithm based on Error Rate Offset of Distance Measurement (거리측정의 오차비율 오프셋을 적용한 보정알고리즘 연구)

  • Choi, Chang-Yong;Lee, Dong-Myung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.914-919
    • /
    • 2010
  • It is confirmed that as the distance measurements accuracy of the SDS-TWR(Symmetric Double-Sided Two-Way Ranging) based on CSS(Chirp Spread Spectrum) is considerably degraded due to frequency interference and it causes to severe errors in the localization applications. In this paper, the compensation algorithm based on error rate offset of distance measurement ($CA_d$) is proposed for the purpose to reduce the ranging errors due to by the SDS-TWR ranging problems. The $CA_d$ measures the distance values between two nodes by means of 1m interval about 1~25m distances in the SDS-TWR, and compensates the distance values using the parameters related to the distance compensation. From the experiments, it is analyzed that the $CA_d$. have reduced the distance error to average 95cm and maximum 526cm, and the distance error by the $CA_d$ was below about 60cm in the 25m distances. In particular, the performance of the distance measurements accuracy by the $CA_d$ is very high in LOS(Line Of Sight) environments.

A study on the Accuracy Analysis of Quadrilateral Nets by Analytical Methods (해석기법에 따른 사변형망의 정확도해석에 관한 연구)

  • 강준묵;이진덕;한승희;이용창
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.6 no.1
    • /
    • pp.3-12
    • /
    • 1988
  • The objective of this paper is to study the characteristics of combination method to correct both angle and distance errors simultaneously based on the least square adjustment methods. Changing the standard errors of distance and angle, the simulation errors of triangultion, trilateration, and combination result in some 39.8%, 33.9%, and 26.3% respectively. As the above, combination method shows more consistent accuracy than other methods. When considering the weight factor about error elements with independence, the diminishing rate of simulated average standard error represents a various change in each method. But considering them simultaneously, it shows a remarkable rate of diminishing 75.5%, 74.1%, and 69.2% in each method. And also, by growing the weight factor, accuracy of triangulation method is growing, whereas that of trilateration is diminishing. Therefore, determining the reasonable weight factors of distance and angle errors simultaneously in the analytical combination method, this method is expected to be one of more accurate and more effective methods for determining horizontal positions on the earth.

  • PDF

The exercise-distance measuring system with high precision considering of altitude (고도를 고려한 정밀도 높은 운동거리 측정시스템)

  • Kim, Dae-Ho;Jung, In-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.615-625
    • /
    • 2012
  • To measure the athletic information of exercisers, the applications of smartphone are programmed based on the sensing data from GPS device. These applications provide exercisers for running or walking distance, exercising time, calorie consumption, average speed, and so on. Among them, the exercising distance should measure accurately because it directly affects the other athletic information for exercisers. However, the existing methods for measuring the exercising distance makes errors because they are worked on the simple sphere or ellipse earth models. Actually, the surface of real earth is composed of inclined ground like hills and valleys. In this paper, a new exercising distance measuring algorithm is proposed to compensate the errors of existing method. It considers the altitude of slopes in exercising routes. To evaluate exercising distance measuring algorithms, we implement the athletic life-guide system based on the smartphone platform. In experiments, the proposed method shows that it provides more accurate distance measurement.

Modified Edit Distance Method for Finding Similar Words in Various Smartphone Keypad Environment (다양한 스마트폰 키패드 환경에서 유사 단어 검색을 위한 수정된 편집 거리 계산 방법)

  • Song, Yeong-Kil;Kim, Hark-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.12-18
    • /
    • 2011
  • Most smartphone use virtual keypads based on touch-pad. The virtual keypads often make typographical errors because of the physical limitations of device such as small screen and limited input methods. To resolve this problem, many similar word-finding methods have been studied. In the paper, we propose an edit distance method (a well-known string similarity measure) that is modified to consider various types of virtual keypads. The proposed method effectively covers typographical errors in various keypads by converting an input string into a physical key sequence and by reflecting characteristics of virtual keypads to edit scores. In the experiments with various keypads, the proposed method showed better performances than a typical edit distance method.