• Title/Summary/Keyword: Distance Relaying Algorithm

Search Result 56, Processing Time 0.021 seconds

Algorithm for Fault Location Estimation on Transmission Lines using Second-order Difference of a Positive Sequence Current Phasor

  • Yeo, Sang-Min;Jang, Won-Hyeok;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.499-506
    • /
    • 2013
  • The accurate estimation of a fault location is desired in distance protection schemes for transmission lines in order to selectively deactivate a faulted line. However, a typical method to estimate a fault location by calculating impedances with voltages and currents at relaying points may have errors due to various factors such as the mutual impedances of lines, fault impedances, or effects of parallel circuits. The proposed algorithm in this paper begins by extracting the fundamental phasor of the positive sequence currents from the three phase currents. The second-order difference of the phasor is then calculated based on the fundamental phasor of positive sequence currents. The traveling times of the waves generated by a fault are derived from the second-order difference of the phasor. Finally, the distance from the relaying point to the fault is estimated using the traveling times. To analyze the performance of the algorithm, a power system with EHV(Extra High Voltage) untransposed double-circuit transmission lines is modeled and simulated under various fault conditions, such as several fault types, fault locations, and fault inception angles. The results of the simulations show that the proposed algorithm has the capability to estimate the fault locations with high speed and accuracy.

A new algorithm for power system stability calculations (전력계통안정도 계산앨고리즘의 개선에 관한 연구)

  • 박영문
    • 전기의세계
    • /
    • v.29 no.3
    • /
    • pp.193-200
    • /
    • 1980
  • A new algorithm for power system stability calculations is developed which considers the nonlinear state equations of 8 state variables for each generator dynamics, expollential load models in respect to bus voltages for nonlinear loads, network equations expressed in terms of bus-injected current sources, various kinds of generator and transmission line outages, abrupt changes in loads, and operations of various kinds of portective relaying systems such as distance relaying, reclosing load shedding by under-frequency relays. In the algorithm are included efficient and reliable schemes for solving network equations by means of the Newton-Raphson iterative method and the Optimally-Ordered Triangular Factorization Technique, and simple procedures for determining fault-point negative and zero sequence impedances for unbalanced line faults. An application of the Optimally-Ordered Triangular Factorization Techniques results in remarkable savings in computing time and memory requirements.

  • PDF

Development of Digital Distance Relay Algorithm Using Fuzzy Inference System on Underground Power Cable Systems (퍼지추론 시스템을 이용한 지중송전계통 보호용 디지털 거리계전 알고리즘 개발)

  • Jung, Chae-Kyun;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.502-503
    • /
    • 2006
  • If the fault occurs on the underground Power cable system, the fault current on the sheath has the influence on all sections because it's returned through earth at the directly grounded point and operation point of SVL(Sheath Voltage Limiter) at joint box. Therefore, the earth resistance and the operation of SVL have an effect on the zero-sequence current. Then the impedance between relaying point and fault point is Increased. That causes the overreach of distance relay. For these reasons, the distance relay algorithm for protecting of the underground power cable systems was developed. It effectively advance the errors using ACI(Advanced Computing Intelligence) technique. In this algorithm, the optimization was performed by fuzzy inference system and genetic algorithm.

  • PDF

Improvement of Digital Distance Relaying Algorithm Using Wavelet Transform in Combined Transmission Line (웨이브렛을 이용한 혼합송전선로에서의 거리계전 알고리즘 개선)

  • 정채균;김경호;하체웅;이종범;윤양웅
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.10
    • /
    • pp.593-601
    • /
    • 2003
  • Distance realy is tripped by the line impedance calculated at the relay point. Accordingly the accurate operation depends on the precise calculation of line impedance. Impedance can be accurately calculated in case of overhead line. However, in case of power cables or combined transmission lines, impedance can not be accurately calculated because cable systems have the sheath, grounding resistance, and sheath voltage limiters(SVLs). There are also several grounding systems in cable systems. Therefore, if there is a fault in cable systems, these terms will severely be caused much error to calculation of impedance. Accordingly the proper compensation should be developed for the correct operation of the distance relay. This paper presents the distance calculating algorithm in combined transmission line with power cable using wavelet transform. In order to achieve such purpose, judgement method to discriminate the fault section in both sections was proposed using D1 coefficient summation in db4. And also, error compensation value was proposed for correct calculation of impedance in power cables section.

Fuzzy Inference System Based Distance Relay Algorithm Development for Protecting an Underground Power Cable Systems (퍼지추론시스템 기반 지중송전계통 보호용 거리계전 알고리즘 개발)

  • Jung, Chae-Kyun;Oh, Sung-Kwun;Park, Keon-Jun;Lee, Jae-Kyu;Lee, Jong-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.172-178
    • /
    • 2008
  • If the fault occurs on the underground power cable systems, the fault current on the sheath has an influence on all sections of cable because it's returned through earth at the directly grounded point and operation point of SVL(Sheath Voltage Limiter) on each insulated joint box. Therefore, the earth resistance and the operation of SVL have an effect on the zero-sequence current, and then the impedance between relaying point and fault point is increased. That causes the overreach of distance relay. For these reasons, the distance relay algorithm for protecting an underground power cable systems hasn't been developed till now. In this paper, new distance relay algorithm is developed for protecting a underground power cable system using fuzzy inference system which is the one of ACI(Advanced Computational Intelligence) techniques. This algorithm is verified by EMTP simulation of real power cable system, and proves to effectively advance the errors

Distance Relaying Algorithm Based on An Adaptive Data Window Using Least Square Error Method (최소자승법을 이용한 적응형 데이터 윈도우의 거리계전 알고리즘)

  • Jeong, Ho-Seong;Choe, Sang-Yeol;Sin, Myeong-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.371-378
    • /
    • 2002
  • This paper presents the rapid and accurate algorithm for fault detection and location estimation in the transmission line. This algorithm uses wavelet transform for fault detection and harmonics elimination and utilizes least square error method for fault impedance estimation. Wavelet transform decomposes fault signals into high frequence component Dl and low frequence component A3. The former is used for fault phase detection and fault types classification and the latter is used for harmonics elimination. After fault detection, an adaptive data window technique using LSE estimates fault impedance. It can find a optimal data window length and estimate fault impedance rapidly, because it changes the length according to the fault disturbance. To prove the performance of the algorithm, the authors test relaying signals obtained from EMTP simulation. Test results show that the proposed algorithm estimates fault location within a half cycle after fault irrelevant to fault types and various fault conditions.

A Digital Distance Relaying Algorithm in Combined Transmission Line Connected whth Overhead Line and Underground Cable (가공송전선로와 지중송전선로가 연계된 혼합송전선로에서 디지털 거리계전 알고리즘)

  • Ha, Che-Wung;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.440-442
    • /
    • 2000
  • This paper describes the digital distance algorithm in case of combined transmission line connected with overhead line and underground cable. Actually as fault is occurred in cable, it results in the complicated phenomena due to the several kind of grounding method in the sheath of cable. Accordingly the impedance. Therefore the correct impedance calculation algorithm is requested in combined transmission line to avoid the wrong trip of relay. This paper presents the development result of impedance calculation algorithm In such transmission line.

  • PDF

The Real-Time Distance Relay Algorithm Using fault Location Estimation Information for Parallel Transmission Line (병행 2회선 송전선로에서 고장점 위치 추정정보를 이용한 실시간 거리계전 알고리즘)

  • 이재규;유석구
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.3
    • /
    • pp.183-192
    • /
    • 2003
  • This paper presents the real-time implemented distance relay algorithm which the fault distance is estimated with only local terminal information. When a single-phase-to-earth fault on a two-parallel transmission line occurs, the reach accuracy of distance relay is considerably affected by the unknown variables which are fault resistance, fault current at the fault point and zero- sequence current of sound line The zero-sequence current of sound line is estimated by using the zero sequence voltage which is measured by relaying location Also. the fault resistance is removed at the Process of numerical formula expansion. Lastly, the fault current through a fault point is expressed as a function of the zero-sequence current of fault line, zero-sequence current of sound line, and line, and fault distance. Therefore, the fault phase voltage can be expressed as the quadratic equation of the fault distance. The solution of this Quadratic equation is obtained by using a coefficient of the modified quadratic equation instead of using the square root solution method. After tile accurate fault distance is estimated. the mote accurate impedance is measured by using such an information.

A New fault Location Algorithm for 765㎸ Untransposed Parallel Transmission Lines (765㎸ 비연가 송전선로에서 고장점 표정 알고리즘)

  • 안용진;강상희
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.3
    • /
    • pp.168-174
    • /
    • 2004
  • This paper describes a new fault location algorithm based on the voltage equation at the relaying point using 6-phase current for untransposed 765㎸ parallel transmission lines. The proposed method uses the voltage and current collected at only the local end. By means of 3-phase circuit analysis theory to compensate the mutual coupling effects between parallel lines, the fault location is derived. The fault distance is determined by solving the 2nd distance equation based on KVL(Kirchhoff's Voltage Law). Extensive simulation results using EMTP(Electromagnatic Transients Program) have verified that the error of the fault location achieved is up to 4.56(%) in untransposed parallel transmission lines.