• Title/Summary/Keyword: Distance Calculation

Search Result 735, Processing Time 0.033 seconds

Formulation of Calculation Method for Inducing Current by Aerial Power Distribution Line (가공 배전선에 의한 전자유도 발생 전류 계산 방법)

  • Lee, Sangmu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.30-36
    • /
    • 2015
  • The formulation of calculation method for electromagnetic inducing current by aerial power distribution line is established. Nearby telecommunication cables can be induced due to the leakage of neutral current because the neutral line of power distribution is grounded at every 50 m distance. By the existing calculation method, the neutral line is regarded as a shielding conductor and the neutral current roles as an inducing current. So the error range to real measurement value is largely extended because the changing effect of leakage current flowing in the ground is not reflected. The leakage current returns to the power substation through the ground and is cumulated as being closer to the substation. When this practical inducing mechanism is applied, the deviation rate of calculation can be drastically reduced within about 100 % range compared to 1000 % of the exsiting method.

Improvement of Calculation Accuracy in the Electron Monte Carlo Algorithm with Optional Air Profile Measurements

  • Sung, Jiwon;Jin, Hyeongmin;Kim, Jeongho;Park, Jong Min;Kim, Jung-in;Choi, Chang Heon;Chun, Minsoo
    • Progress in Medical Physics
    • /
    • v.31 no.4
    • /
    • pp.163-171
    • /
    • 2020
  • Purpose: In this study, the accuracies of electron Monte Carlo (eMC) calculation algorithms were evaluated to determine whether electron beams were modeled by optional air profiles (APs) designed for each applicator size. Methods: Electron beams with the energies of 6, 9, 12, and 16 MeV for VitalBeam (Varian Medical System, Palo Alto, CA, USA) and 6, 9, 12, 16, and 20 MeV for Clinac iX (Varian Medical System) were used. Optional APs were measured at the source-to-detector distance of 95 cm with jaw openings appropriate for each machine, electron beam energy, and applicator size. The measured optional APs were postprocessed and converted into the w2CAD format. Then, the electron beams were modeled and calculated with and without optional APs. Measured profiles, percentage depth doses, penumbras with respect to each machine, and energy were compared to calculated dose distributions. Results: For VitalBeam, the profile differences between the measurement and calculation were reduced by 0.35%, 0.15%, 0.14%, and 0.38% at 6, 9, 12, and 16 MeV, respectively, when the beams were modeled with APs. For Clinac iX, the differences were decreased by 0.16%, -0.31%, 0.94%, 0.42%, and 0.74%, at 6, 9, 12, 16, and 20 MeV, respectively, with the insertion of APs. Of note, no significant improvements in penumbra and percentage depth dose were observed, although the beam models were configured with APs. Conclusions: The accuracy of the eMC calculation can be improved in profiles when electron beams are modeled with optional APs.

A Method for Real Time Target Following of a Mobile Robot Using Heading and Distance Information (방향각 및 거리 정보에 의한 이동 로봇의 실시간 목표물 추종 방법)

  • Ko, Nak-Yong;Seo, Dong-Jin;Moon, Yong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.624-631
    • /
    • 2008
  • This paper presents a method for a mobile robot to follow a moving object in real time. The robot follows a target object keeping the facing angle toward the target and the distance to the target to given value. The method consists of two procedures: first, the detection of target position in the robot coordinate system, and the second, the calculation of translational velocity and rotational velocity to follow the object:. To detect the target location, range sensor data is represented in histogram. Based on the real time calculation of the location of the target relative to the robot, translational velocity and rotational velocity to follow the target are calculated. The velocities make the heading angle and the distance to target converge toward the desired ones. The performance of the method is tested through simulation. In the simulation, the target moves with three different trajectories, straight line trajectory, rectangular trajectory, and circular trajectory. As shown in the results, it is inevitable to lose track temporarily of the target when the target suddenly changes its motion direction. Nevertheless, the robot speeds up to catch up and finally succeeds to follow the target as soon as possible even in this case. The proposed method can also be utilized to coordinate the motion of multiple robots to keep their formation as well as to follow a target.

Comparison and Analysis of Information Exchange Distributed Algorithm Performance Based on a Circular-Based Ship Collision Avoidance Model (원형 기반 선박 충돌 피항 모델에 기반한 정보 교환 분산알고리즘 성능 비교 분석)

  • Donggyun Kim
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.401-409
    • /
    • 2023
  • This study compared and analyzed the performance of a distributed area search algorithm and a distributed probability search algorithm based on information exchange between ships. The distributed algorithm is a method that can search for an optimal avoidance route based on information exchange between ships. In the distributed area search algorithm, only a ship with the maximum cost reduction among neighboring ships has priority, so the next expected location can be changed. The distributed stochastic search algorithm allows a non-optimal value to be searched with a certain probability so that a new value can be searched. A circular-based ship collision avoidance model was used for the ship-to-ship collision avoidance experiment. The experimental method simulated the distributed area search algorithm and the distributed stochastic search algorithm while increasing the number of ships from 2 to 50 that were the same distance from the center of the circle. The calculation time required for each algorithm, sailing distance, and number of message exchanges were compared and analyzed. As a result of the experiment, the DSSA(Distributed Stochastic Search Algorithm) recorded a 25%calculation time, 88% navigation distance, and 84% of number of message exchange rate compared to DLSA.

A Appropriate Flux Generating Conditions for Semiconductor Etching Simulation (반도체 식각 전산모사에 적합한 플럭스 생성 조건)

  • Jeong, Seunghan;Gwun, Oubong;Shin, Seongsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.105-115
    • /
    • 2015
  • In semiconductor etching simulation, The source modeling for generating plasma species is required. In this paper, we modeled the source of plasma etching process with probability distribution and the feature profile with simple geometry objects, then got the flux on the feature profile. The distance between the source and the cell on the modeling parameters of the source, there are a number of particles to be emitted from a source, there is a number (area of the cell) of the cell on the profile with additional parameters to give the calculation of flux. The flux error ratio on both gaussian(Incident Flux) and cosine probability distribution(Incident Neutral Flux) is much decreased as the number of ray is increased but the processing time is more increased than that. The increase of the number of cell and distance makes increase the flux error ratio and the processing time moderately. In view of the processing time through the experimental results in this paper, it is possible to analogize the calculation of appropriate fluxes.

Development and Application of Pre/Post-processor to EMTP for Sequence Impedance Analysis of Underground Transmission Cables (지중 송전선로 대칭분 임피던스 해석을 위한 EMTP 전후처리기 개발과 활용)

  • Choi, Jong-Kee;Jang, Byung-Tae;An, Yong-Ho;Choi, Sang-Kyu;Lee, Myoung-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1364-1370
    • /
    • 2014
  • Power system fault analysis has been based on symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. Obtaining accurate line impedances as possible are very important for estimating fault current magnitude and setting distance relay accurately. Especially, accurate calculation of zero sequence impedance is important because most of transmission line faults are line-to-ground faults, not balanced three-phase fault. Since KEPCO has started measuring of transmission line impedance at 2005, it has been revealed that the measured and calculated line impedances are well agreed within reasonable accuracy. In case of underground transmission lines, however, large discrepancies in zero sequence impedance were observed occasionally. Since zero sequence impedance is an important input data for distance relay to locate faulted point correctly, it is urgently required to analyze, detect and consider countermeasures to the source of these discrepancies. In this paper, development of pre/post processor to ATP (Alternative Transient Program) version of EMTP (Electro-Magnetic Transient Program) for sequence impedance calculation was described. With the developed processor ATP-cable, effects of ground resistance and ECC (Earth Continuity Conductor) on sequence impedance were analyzed.

Curvature Radius of Equivalent Lens Obtained by Recursive Numerical Solving of Gaussian Equations (재귀적 수치 계산법을 이용한 등가 렌즈의 곡률 계산)

  • Lee, Kyu Haeng
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.6
    • /
    • pp.275-286
    • /
    • 2022
  • As a first step in the optical design process, we derive a recursive numerical calculation method that can give a solution to the Gaussian equation that the paraxial rays satisfy. Given the refractive power, the angle of incidence to the first principal plane of the lens, the angle of exit to the second principal plane of the lens, and the distance between the principal planes, the radii of curvature of the front and back surfaces of a lens can be obtained by applying the recursive numerical calculation method proposed in this paper according to the thickness of the lens. If a module consists of two or more lenses, the thickness and radius of curvature of each lens can be similarly determined after selecting the distance between the principal planes of the lens under the condition of the design specification while increasing the number of lenses one by one.

Evaluation of Radiation Dose to Patients according to the Examination Conditions in Coronary Angiography (심장동맥 조영 검사 시 검사 조건에 따른 환자 선량 평가)

  • Yong-In Cho
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.509-517
    • /
    • 2023
  • This study analyzed imaging conditions and exposure index through clinical information collection and dose calculation programs in coronary angiography examinations. Through this, we aim to analyze the effective dose according to examination conditions and provide basic data for dose optimization. In this study, ALARA(As Low As Reasonably Achievable)-F(Fluoroscopy), a program for evaluating the radiation dose of patients and the collected clinical data, was used. First, analysis of imaging conditions and exposure index was performed based on the data of the dose report generated after coronary angiography. Second, after evaluating organ dose according to 9 imaging directions during coronary angiography, with the LAO fixed at 30°, dose evaluation was performed according to tube voltage, tube current, number of frames, focus-skin distance, and field size. Third, the effective dose for each organ was calculated according to the tissue weighting factors presented in ICRP(International Commission on Radiological Protection) recommendations. As a result, the average sum of air kerma during coronary angiography was evaluated as 234.0±112.1 mGy, the dose-area product was 25.9±13.0 Gy·cm2, and the total fluoroscopy time was 2.5±2.0 min. Also, the organ dose tended to increase as the tube voltage, milliampere-second, number of frames, and irradiation range increased, whereas the organ dose decreased as the FSD increased. Therefore, medical radiation exposure to patients can be reduced by selecting the optimal tube voltage and field size during coronary angiography, maximizing the focal-skin distance, using the lowest tube current possible, and reducing the number of frames.

Minimum Separation Distance Calculation for Small Unmanned Aerial Vehicles using Flight Simulation (비행 시뮬레이션을 이용한 소형 무인항공기의 최소 분리 거리 산출)

  • Junyoung Han
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.15-20
    • /
    • 2024
  • The utilization of small unmanned aerial vehicles (UAVs) has expanded into both military and civilian domains, increasing the necessity for research to ensure operational safety and the efficient utilization of airspace. In this study, the calculation of minimum separation distances for the safe operation of small UAVs at low altitudes was conducted. The determination of minimum separation distances requires a comprehensive analysis of the total system errors associated with small UAVs, necessitating sensitivity analysis to identify key factors contributing to flight technology errors. Flight data for small UAVs were acquired by integrating the control system of an actual small UAV with a flight simulation program. Based on this data, operational scenarios for small UAVs were established, and the minimum separation distances for each scenario were calculated. This research contributes to proposing methods for utilizing calculated minimum separation distances as crucial parameters for ensuring the safe operation of small unmanned aerial vehicles in real-world scenarios.

A Study on Evaluation of Consistency Using 3-Dimensional Sight Distance (3차원시거를 이용한 도로일관성 평가에 관한 연구)

  • Park, Je-Jin;Oh, Young-Wook;Kang, Jeong-Gyu;Ha, Tae-Jun
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.3
    • /
    • pp.187-197
    • /
    • 2008
  • While driving a highway, A driver gets lots of information through geometrical structure, traffic situation, signs on the road. He gets most of the information by visual sense. Acceleration or deceleration and driving direction depend on sight distance. Therefore, it's essential to secure a driver's sight distance for a safe drive. However, design guides of geometrical structure and sight distance suggest respective standards of horizontal and vertical alignment. They do not indicate quantitative standard of combined alignment. Currently, element separated on a two-dimensional projected plane are available, but they do not guarantee safe and pleasant design. I will use the existent model analysing three-dimensional sight distance through mathematical calculation and sort a variety of geometrical structure element and type. In these researches, we will look at how much three-dimensional sight distance is overestimated or underestimated compared to two-dimensional. I will develop a program which predicts traffic velocity on the curvature of two-lane provincial road. stopped sight distance and three-dimensional sight distance will be compared at a predicted drive velocity. I will suggest the way to evaluate road consistency.