• Title/Summary/Keyword: Distal Tapered Stem(원위부가 짧은 비압박형 스템)

Search Result 2, Processing Time 0.021 seconds

Biomechanical characteristics of the distal filling effects in cementless femoral stem (무시멘트형 대퇴스템에서 원위부 압박 정도에 따른 생체역학적 특성)

  • Park, Sang-eok;Park, Jae-Won;Chae, Soo-Won
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.387-392
    • /
    • 2000
  • In cementless total hip replacement(THR), an initial stability of the femoral component is important to long term fixation of femoral stem. The initial stability has close relationship with the relative displacement of prosthesis and spongy bone at the proximal of femur. After implantation of the prosthesis. the surrounding bone is partially shielded from load carrying and starts to resort. Stress shielding is the cause of the loss of proximal bone. Assessing stress distribution of femur is important to predict stress shielding. The initial stability and the stress shielding were investigated for two loading conditions approximating a single leg stance and a stair climbing. Three types of stems were studied by the finite element method to analyze the biomechanical effects of distal filling of cementless femoral stems, Three types of stems employed are a distal filling stem, a distal flexible stem, and a distal tapered stem.

  • PDF

The Distal Filling Effects on Hip Jont Function in Cementless Total Hip Replacement (인공 고관절 대치술에서 무시멘트형 스템의 원위부 압박이 고관철 성능에 미치는 영향)

  • 채수원;박상석;박재원
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2777-2785
    • /
    • 2000
  • In cementless total hip replacement(THR), an initial stability of the femoral component is important to long term fixation of femoral stem. The intial stability has close relationship with the relative displacement of prosthessis and sponge bone at the proximal of femur. After implantation of the proshesis, the surrounding bone is partially shielded from load carrying and starts to resorb. Stress shielding is the cause of the loss of proximal bone. Assessing stress distribution of femur is important to predict stress shielding. The initial stability and the stress shielding were investigated for two loading conditions approximating a single leg stance and a stair climbing. Three types of stems were studied by the finite element method to analyze the biomechanical effects of distal filling of cementless femoral stems. Three types of stems empolyed are a distal filling stem, a distal flexible stem, and a distal tapered stem.