• 제목/요약/키워드: Dissolved air flotation (DAF)

Search Result 80, Processing Time 0.208 seconds

Automatic control of coagulant dosage on the sedimentation and dissolved air flotation(SeDAF) process for enhanced phosphorus removal in sewage treatment facilities (하수처리시설에서 인 고도처리를 위한 일체형 침전부상공정(SeDAF)의 응집제 주입농도 자동제어기법 검토)

  • Jang, Yeoju;Jung, Jinhong;Kim, Weonjae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.411-423
    • /
    • 2020
  • To remove phosphorus from the effluent of public wastewater treatment facilities, hundreds of enhanced phosphorus treatment processes have been introduced nationwide. However, these processes have a few problems including excessive maintenance cost and sludge production caused by inappropriate coagulant injection. Therefore, the optimal decision of coagulant dosage and automatic control of coagulant injection are essential. To overcome the drawbacks of conventional phosphorus removal processes, the integrated sedimentation and dissolved air flotation(SeDAF) process has been developed and a demonstration plant(capacity: 100 ㎥/d) has also been installed. In this study, various jar-tests(sedimentation and / or sedimentation·flotation) and multiple regression analyses have been performed. Particularly, we have highlighted the decision-making algorithms of optimal coagulant dosage to improve the applicability of the SeDAF process. As a result, the sedimentation jar-test could be a simple and reliable method for the decision of appropriate coagulant dosage in field condition of the SeDAF process. And, we have found that the SeDAF process can save 30 - 40% of coagulant dosage compared with conventional sedimentation processes to achieve total phosphorus (T-P) concentration below 0.2 mg/L of treated water, and it can also reduce same portion of sludge production.

A Study for Application of DAF Technology to Remove Chrolophyl-a and Dissolved Organic Compound in Yongdam Reservoir (용담호소 내 Chlorophyl-a와 유기물 저감을 위한 부상기법 적용 연구)

  • Dockko, Seok;Lee, Hyungjib
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.303-309
    • /
    • 2006
  • Yongdam reservoir located in Jeoliabuk-do has had a lot of concerns for its algal blooming since it has started to fill water. Many water utilities near Yongdam area use reservoirs even though they have some problems with certain algae that cause tastes and odors and clog filters. In this research, dissolved air flotation (DAF) technology was examined for feasibility for removal of algae. OAF can save the capital cost for its compactness, because its hydraulic loadings (overflow rates) are 10 times higher than sedimentation, and hydraulic detention times are much shorter, typically 5 to 15 minutes. As a result of this research, PAC is effective rather than Alum to DAF for pretreatment. Higher DOC plays an important role to change zetapotential negatively to inhibit destabilization of particle to coagulation. The length of pipeline to carry pressurized water into reactor does not affect reaction.

Empirical evaluation for design parameters and operating characteristics of the integrated sedimentation and dissolved air flotation (SeDAF) process at the pilot-scale plant (파일럿 플랜트 규모에서 일체형 침전부상공정 (SeDAF)의 설계인자 및 운전특성에 대한 실증적 평가)

  • Jang, Yeoju;Jung, Jinhong;Lim, Hyunman;Kim, Weonjae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • Eutrophication and algal blooms can lead to increase of taste and odor compounds and health problems by cyanobacterial toxins. To cope with these eco-social issues, Ministry of Environment in Korea has been reinforcing the effluent standards of wastewater treatment facilities. As a result, various advanced phosphorus removal processes have been adopted in each wastewater treatment plant nation-widely. However, a lot of existing advanced wastewater treatment processes have been facing the problems of expensive cost in operation and excessive sludge production caused by high dosage of coagulant. In this study, the sedimentation and dissolved air flotation (SeDAF) process integrated with sedimentation and flotation has been developed for enhanced phosphorus removal in wastewater treatment facilities. Design and operating parameters of the SeDAF process with the capacity of 100 ㎥/d were determined, and a demonstration plant has been installed and operated at I wastewater treatment facility (located in Gyeonggi-do) for the verification of field applicability. Several empirical evaluations for the SeDAF process were performed at demonstration-plant scale, and the results showed clearly that T-P and turbidity values of treated water were to satisfy the highest effluent standards below 0.2 mg/L and 2.0 NTU stably for all of operation cases.

Simulation study of DAF flotation basin using CFD (전산유체해석기법을 이용한 용존공기부상공정의 유동해석)

  • Park, Byungsung;Woo, Sungwoo;Park, Sungwon;Min, Jinhee;Lee, Woonyoung;You, Sunam;Jun, Gabjin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.261-272
    • /
    • 2013
  • Algae boom (Red tide) in south coastal area of Korea has been appeared several times during a decade. If algae boom appears in the desalination plant, media filter and UF filter are clogged quickly, and the plant should be shutdown. In general, Algae can be removed from water by flotation better than by sedimentation, because of the low density of algal cell. The purpose of this study conducts the CFD simulation of DAF flotation basin to apply the design of the dissolved air flotation with ball filter in the Test Bed for SWRO desalination plant. In this study, Eulerian-Eulerian multiphase model was applied to simulate the behavior of air bubbles and seawater. Density difference model and gravity were used. But de-sludge process and mass transfer between air bubbles and seawater were ignored. Main parameter is hydraulic loading rate which is varied from 20 m/hr to 27.5 m/hr. Geometry of flotation basin were changed to improve the DAF performance. According to the result of this study, the increase of hydraulic loading rate causes that the flow in the separation basin is widely affected and the concentration of air is increased. The flow pattern in the contact zone of flotation basin is greatly affected by the location of nozzle header. When the nozzle header was installed not the bottom of the contact zone but the above, the opportunity of contact between influent and recycle flow was increased.

Treatment of Contaminated Groundwater Containing Petroleum and Suspended Solids Using DAF and Mixed Coagulation Processes (DAF와 혼화응집공정을 이용한 현탁성 고형물 함유 유류 오염 지하수 처리)

  • Lee, Chaeyoung;Jang, Yeongsu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.8
    • /
    • pp.25-32
    • /
    • 2010
  • Contamination of soil and groundwater by the compounds of hydrocarbon petroleum has been widely accepted as the main cause that harms the environments and health. To remove those pollutants, absorbing clothes, activated carbons, or oil-water separation devices with the gravity method are employed for treatment. However, those materials and devices cannot remove the emulsion pollutants despite of their efficiency for removing free products. Therefore, we investigated the problems which occur during the groundwater treatment for the highly concentrated suspended solid particles, which can be resulted from excavation, and to propose methods to remove TPH(Total Petroleum Hydrocarbon). After coagulation experiment with high molecular polymers, the concentration of SS(Suspended Solids) and COD(Chemical Oxygen Demand) turned to satisfy the groundwater quality criteria within 5 minutes while the concentration of TPH failed to meet the water quality standard of effluent. Consequently, the water quality criteria for effluent could not be met by single DAF(Dissolved Air Flotation) process. However all water quality criteria could be satisfied after 20 minutes when coagulation reactions are carried out simultaneously in the DAF reactor.

Evaluation on Flotation Efficiency of Bubble-floc Agglomerates and Operation Characteristics of Hydraulic Loading Rate Using Population Balance in DAF Process (DAF공정에서 개체군 수지를 이용한 기포-플록 응집체의 부상효율과 수리학적 부하율의 운전특성 평가)

  • Kwak, Dong-Heui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.5
    • /
    • pp.531-540
    • /
    • 2008
  • The main advantage of dissolved air flotation (DAF) in water treatment process is the small dimension compared with conventional gravity sedimentation and it can be basically reduced by the separation zone performed with the short solid-liquid separation time. Fine bubbles make such a short time possible to carry out solid from liquid separation as a collector on the course of water treatment. Therefore, the dimension of separation zone in DAF process is practically determined by the rise velocity of the bubble-floc agglomerates, which is a floc attached with several bubbles. To improve flotation velocity and particle removal efficiency in DAF process, many researchers have tried to attach bubbles as much as possible to flocs. Therefore, the maximum number of attached bubble on a floc and the rise velocity of bubble-floc agglomerates considered as the most important factor to design the separation zone of flotation tank in DAF process was simulated based on the population balance theory. According to the simulation results of this study, the size and volume concentration of bubble influenced on the possible number of attached bubble on a floc. The agglomerates attached with smaller bubble was more sensitive to hydraulic loading rate in the separation zone of DAF process. For the design of a high rate DAF process applied over surface loading 40 m/hr. it is required a precise further study on the variation of bubble property and behavior including in terms of bubble size distribution.

Operation and Diagnosis of DAF Water Treatment Plant at Highly Turbid Raw Water (고탁도시 DAF 정수장의 운영 및 진단)

  • Kwon, Soon-Buhm;Ahn, Hyo-Won;Kang, Jun-gu;Son, Byong-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.191-200
    • /
    • 2004
  • DAF process has been designed considering raw water quality characteristics in Korea. Although direct filtration is usually operated, DAF is operated when the freshwater blooms occut or raw water turbidity become high. Pre-sedimentation iS prepared in case when raw water turbidity is very high by rainstorms. A main feature of this plant is that the operation mode can be changed (controlled) based on the characteristics of raw water to optimize the effluent quality and the operation costs. Treatment capacity (surface loading rate) and efficiency of DAF was found to be better than conventional sedimentation process. Moreover, low-density particles (algae and alum flocs) are easily separated while it is difficult to remove in sedimentation. One of the main concerns in adoption of DAF (Dissolved Air-Flotation) process is a high raw water turbidity problem. That is, DAF is not adequate for raw water, which is more turbid than 100NTU. In order to avoid this problem, pre-sedimentation basins are prepared in DAF plant to decrease the turbidity of DAF influent. For simulation of the actual operation, bench and full-scale tests were performed for highly turbid water conditions. Consequently, DAF process coupled with sedimentation is suggested that pre-sedimentation with optimum coagulation prior to DAF would be appropriate.

An Effect of the Micro Bubble Formation Depending on the Saturator and the Nozzle in the Dissolved Air Flotation System (DAF 공정에서 공기포화장치와 노즐 특성 별 미세기포 발생에 미치는 영향)

  • Park, S.C.;Oh, H.Y.;Chung, M.K.;Song, S.L.;Ahn, Y.H.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.929-936
    • /
    • 2013
  • The saturator and injection nozzle are important facilities on the dissolved air flotation process. To increase the formation of micro bubble, it is required to improve the air dissolving performance in the saturator and keep the pressure uniform from the saturator to the nozzle. This study aimed to evaluate the performance of the saturator and the hydraulic effect of the nozzle and the pipe structure. The air volume concentration, bubble size and bubble residual time were measured in the test. The saturator, which had mounted with the spray nozzle, showed a good performance for bubble formation. Also, the characteristics of micro bubble formation were influenced by pressure uniformity and flow velocity through the orifice in the nozzle.

Pretreatment Condition in the Full Scale Dissolved Air Flotation Process Using a DAF Pump (DAF 펌프를 이용한 실규모 용존공기부상 공정의 전처리 조건)

  • Lee, Chang-Han;An, Dae-Myung;Kim, Seong-Soo;Cho, Seok-Ho;Ahn, Kab-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.58-63
    • /
    • 2009
  • Dissolved air flotation (DAF) process is generally considered more effective than sedimentation process in raw water containing algae, humus materials, and low density particles. This study presents the treatment efficiencies by the coagulation and flocculation conditions at a drinking water treatment plant using a laboratory tester and the full scale DAF pump system. The full scale DAF pump system (F-DAF) in this study had a capacity of 5,000 $m^3$/d and a hydraulic surface loading of 10 m/hr. F-DAF in D drinking water treatment plant was continuously operated to determine the operational performance and pretreatment (mixing and coagulation) conditions. Results in the laboratory experiment showed that the optimum coagulant (PSO-M) doses required to 2.7~4.5 mL/$m^3$/NTU with raw water turbidity from 13.8 NTU to 56.3 NTU. F-DAF in the optimum coagulant dosage could be operated in effluent turbidity of 1 NTU or below for a month.

Thickening of Sludge from DAF process by Flotation; Application of Solid Flux Theory and Effective Factors (DAF 슬러지의 부상식 농축; 고형물 플럭스법 적용과 영향인자)

  • Park, Sangcheol;Han, Mooyoung;Dockko, Seok;Kwon, Soonbuhm
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.617-626
    • /
    • 2006
  • Compared with the sludge from gravity sedimentation, it is difficult for operations to settle the sludge occurred from dissolved-air-flotation (DAF). Even though there are some problems in treating DAF sludge with conventional gravity thickeners, those has been used until now. In this study, Solid Flux theory for gravity thickening was applied to the Solid Flux of DAF sludge through flotation in order to develop new methodology for treatment of DAF sludge. Also, characteristics of DAF sludge were investigated. From the experiment results, it was revealed that the higher the polymer dosage, at fixed the solid concentration, the greater the rising velocity becomes. When we applied solid flux theory, the relationship, which is similar to that of gravity thickening, has been achieved. Also, we could find the proper polymer dosage from the rising velocity is about 50 mg/L. Consequently, the limiting solid flux can be derived from the relationship between the total solid flux and the withdrawal velocity of DAF sludge. Furthermore, the factors, such as solid concentrations, bubble volume, pH, zeta potential, and temperature, have effects on the flotation and sedimentation for DAF sludge treatment.