• Title/Summary/Keyword: Display manufacturing process

Search Result 385, Processing Time 0.022 seconds

AI/BIG DATA-based Smart Factory Technology Status Analysis for Effective Display Manufacturing (효과적인 디스플레이 제조를 위한 AI/BIG DATA 기반 스마트 팩토리 기술 현황 분석)

  • Jung, Sukwon;Lim, Huhnkuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.471-477
    • /
    • 2021
  • In the field of display, a smart factory means more efficient display manufacturing using AI/BIG DATA technology not only for job automation, but also for existing process management, moving facilities, process abnormalities, and defect classification. In the past, when defects appeared in the display manufacturing process, the classification of defects and coping with process abnormalities were different, a lot of time was consumed for this. However, in the field of display manufacturing, advanced process equipment must be used, and it can be said that the competitiveness of the display manufacturing industry is to quickly identify the cause of defects and increase the yield. In this paper, we will summarize the cases in which smart factory AI/BIG DATA technology is applied to domestic display manufacturing, and analyze what advantages can be derived compared to existing methods. This information can be used as prior knowledge for improved smart factory development in the field of display manufacturing using AI/BIG DATA.

Development of Prediction Model using PCA for the Failure Rate at the Client's Manufacturing Process (주성분 분석을 이용한 고객 공정의 불량률 예측 모형 개발)

  • Jang, Youn-Hee;Son, Ji-Uk;Lee, Dong-Hyuk;Oh, Chang-Suk;Lee, Duek-Jung;Jang, Joongsoon
    • Journal of Applied Reliability
    • /
    • v.16 no.2
    • /
    • pp.98-103
    • /
    • 2016
  • Purpose: The purpose of this paper is to get a meaningful information for improving manufacturing quality of the products before they are produced in client's manufacturing process. Methods: A variety of data mining techniques have been being used for wide range of industries from process data in manufacturing factories for quality improvement. One application of those is to get meaningful information from process data in manufacturing factories for quality improvement. In this paper, the failure rate at client's manufacturing process is predicted by using the parameters of the characteristics of the product based on PCA (Principle Component Analysis) and regression analysis. Results: Through a case study, we proposed the predicting methodology and regression model. The proposed model is verified through comparing the failure rates of actual data and the estimated value. Conclusion: This study can provide the guidance for predicting the failure rate on the manufacturing process. And the manufacturers can prevent the defects by confirming the factor which affects the failure rate.

Inkjet Technology and Products for Flexible Display Manufacturing

  • Schoeppler, Martin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.179-181
    • /
    • 2008
  • Major display equipment suppliers introduced equipment using inkjets for manufacturing steps such as printing polyimide alignment layers and color filters. This paper discusses how inkjets can be used in the development of flexible displays and materials printing systems designed to meet the challenges of fluids and process development.

  • PDF

Recent progress of Ergonomics Studying in CRTs Design and Manufacturing

  • Wu, Mingli;Duan, Cheng
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.450-452
    • /
    • 2004
  • This paper analyzes some important achievements in Ergonomics field in CRT industry. After introducing principal regulatory requirements for CRTs, including ISO 9241 and TCO standards, the paper indicates some theoretical research in ergonomics of the display devices, such as new contrast parameter for appraising the display devices and effects of environment on visual performance at the ergonomic. Then, as the pivot of this paper, some practical progress, in the ergonomics field in CRT manufacturing , are described, such as vacuum sputtering process for advanced CRTs, new developed wet process for getting the multi-coating layers on surface of the panel.

  • PDF

Precision Industrial Ink Jet Printing Technology for Full Color PLED Display Manufacturing

  • Edwards, Chuck;Bennett, Richard;Lee, Jueng-Gil;Silz, Kenneth
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.141-143
    • /
    • 2002
  • Litrex Ink Jet equipment offers prospect for reliable and low cost manufacturing process for PLED technology. The design concept of 140P system that we are developing meets requirement of process/equipment for PLED manufacturing line in terms of higher mechanical accuracy, in-line monitoring system of print head, high precision of process capability, reasonable through-put, high reliability/easier maintenance and no particle generation.

  • PDF

Defect Inspection of the Pixels in OLED Type Display Device by Image Processing (화상처리를 이용한 OLED 디스플레이의 픽셀 불량 검사에 관한 연구)

  • Park, Kyoung-Seok;Shin, Dong-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.2
    • /
    • pp.25-31
    • /
    • 2009
  • The image processing methods are widely used in many industrial fields to detect defections in inspection devices. In this study an image processing method was conducted for the detection of abnormal pixels in a OLED(Organic Light Emitting Diode) type panel which is used for small size displays. The display quality of an OLED device is dependent on the pixel formation quality. So, among the so many pixels, to find out the faulty pixels is very important task in manufacturing processing or inspection division. We used a line scanning type BW(Black & White) camera which has very high resolution characteristics to acquire an image of display pixel patterns. And the various faulty cases in pixel abnormal patterns are considered to detect abnormal pixels. From the results of the research, the normal BW pixel image could be restored to its original color pixel.

  • PDF

Analysis of Equipment Factor for Smart Manufacturing System (스마트제조시스템의 설비인자 분석)

  • Ahn, Jae Joon;Sim, Hyun Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.168-173
    • /
    • 2022
  • As the function of a product is advanced and the process is refined, the yield in the fine manufacturing process becomes an important variable that determines the cost and quality of the product. Since a fine manufacturing process generally produces a product through many steps, it is difficult to find which process or equipment has a defect, and thus it is practically difficult to ensure a high yield. This paper presents the system architecture of how to build a smart manufacturing system to analyze the big data of the manufacturing plant, and the equipment factor analysis methodology to increase the yield of products in the smart manufacturing system. In order to improve the yield of the product, it is necessary to analyze the defect factor that causes the low yield among the numerous factors of the equipment, and find and manage the equipment factor that affects the defect factor. This study analyzed the key factors of abnormal equipment that affect the yield of products in the manufacturing process using the data mining technique. Eventually, a methodology for finding key factors of abnormal equipment that directly affect the yield of products in smart manufacturing systems is presented. The methodology presented in this study was applied to the actual manufacturing plant to confirm the effect of key factors of important facilities on yield.

Types & Characteristics of Chemical Substances used in the LCD Panel Manufacturing Process (LCD 제조공정에서 사용되는 화학물질의 종류 및 특성)

  • Park, Seung-Hyun;Park, Hae Dong;Ro, Jiwon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.3
    • /
    • pp.310-321
    • /
    • 2019
  • Objectives: The purpose of this study was to investigate types and characteristics of chemical substances used in LCD(Liquid crystal display) panel manufacturing process. Methods: The LCD panel manufacturing process is divided into the fabrication(fab) process and module process. The use of chemical substances by process was investigated at four fab processes and two module processes at two domestic TFT-LCD(Thin film transistor-Liquid crystal display) panel manufacturing sites. Results: LCD panels are manufactured through various unit processes such as sputtering, chemical vapor deposition(CVD), etching, and photolithography, and a range of chemicals are used in each process. Metal target materials including copper, aluminum, and indium tin oxide are used in the sputtering process, and gaseous materials such as phosphine, silane, and chlorine are used in CVD and dry etching processes. Inorganic acids such as hydrofluoric acid, nitric acid and sulfuric acid are used in wet etching process, and photoresist and developer are used in photolithography process. Chemical substances for the alignment of liquid crystal, such as polyimides, liquid crystals, and sealants are used in a liquid crystal process. Adhesives and hardeners for adhesion of driver IC and printed circuit board(PCB) to the LCD panel are used in the module process. Conclusions: LCD panels are produced through dozens of unit processes using various types of chemical substances in clean room facilities. Hazardous substances such as organic solvents, reactive gases, irritants, and toxic substances are used in the manufacturing processes, but periodic workplace monitoring applies only to certain chemical substances by law. Therefore, efforts should be made to minimize worker exposure to chemical substances used in LCD panel manufacturing process.

Development of Atmospheric Pressure Plasma Equipment and It's Application to Flip Chip BGA Manufacturing Process (대기압 플라즈마 설비 개발 및 Flip Chip BGA 제조공정 적용)

  • Lee, Ki-Seok;Ryu, Sun-Joong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.2
    • /
    • pp.15-21
    • /
    • 2009
  • Atmospheric pressure plasma equipment was successfully applied to the flip chip BGA manufacturing process to improve the uniformity of flux printing process. The problem was characterized as shrinkage of the printed flux layer due to insufficient surface energy of the flip chip BGA substrate. To improve the hydrophilic characteristics of the flip chip BGA substrate, remote DBD type atmospheric pressure plasma equipment was developed and adapted to the flux print process. The equipment enhanced the surface energy of the substrate to reasonable level and made the flux be distributed over the entire flip chip BGA substrate uniformly. This research was the first adaptation of the atmospheric pressure plasma equipment to the flip chip BGA manufacturing process and a lot of possible applications are supposed to be extended to other PCB manufacturing processes such as organic cleaning, etc.

  • PDF

Technical Challenges for Polymer OLED Display Manufacturing

  • Lee, James Jueng-Gil
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1163-1167
    • /
    • 2008
  • Since Samsung SDI and Sony started mass production of AM-OLED display for mobile/TV applications, OLED technology has emerged as leading candidate among the many technologies under development for next generation Flat panel displays. P-OLED (Polymer Organic Lighting Emitting Diode) technology, a class of OLED, is gathering momentum towards commercialization. P-OLED technology has made tremendous progress in terms of display performance (including life time, efficiency and color gamut) and in the maturity of ink jet printing process and equipment. In order to get into the mobile/TV application market successfully, P-OLED display technology must meet the following display makers' requirements: (1) P-OLED Display Performance in terms of lifetime, efficiency, and color coordinates, (2) Low Cost Manufacturing Technology such as "Solution Processable Printing Technology". P-OLED technology has already overcome many of the hurdles to mass manufacturing. In this paper, the latest developments in ink jet printing technology, including P-OLED material performance, is discussed.

  • PDF