• Title/Summary/Keyword: Displacement-Force Relationship

Search Result 124, Processing Time 0.025 seconds

Lateral Load Test for Various Aseismatic Methods of Pile Heads of Pier Type Quay Walls (잔교식 안벽의 말뚝 두부 내진 보강기법에 따른 수평재하실험)

  • 이용재;한진태;장인성;김명모
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.98-106
    • /
    • 2003
  • To construct pile-supported wharf structures that must support heavy horizontal loads, both vertical piles and batter piles are used. Batter piles are used to secure the bearing capacity against the horizontal loads. However, past case histories have shown that the heads of batter piles are vulnerable because these heads are subjected to excessive axial loads during earthquakes. Therefore, the aseismatic reinforcement method must be developed to prevent batter pile heads from breaking due to excessive seismic loads. Two different connecting methods of either inserting rubber or ball-bearing between batter pile head and upper plate were proposed to improve the aseismatic efficiency. Three large-scale pile head models(rubber type model, ball-bearing type model, and fixed type model) were manufactured and horizontal loading tests were peformed for these models. The results showed that the force-displacement relationship of the fixed type model was linear, but that of the rubber type model and the ball-bearing type model was bilinear. The increase in the horizontal displacement led to the increase in the horizontal stiffness of the rubber type models and the decrease in that of the ball-bearing type model. Compared with the values for fixed type model, the damping ratios of the rubber type model and the ball-bearing type model increased about 33~185% and 263~269%, respectively.

  • PDF

Development of Mathematical Model to Predict Dynamic Muscle Force Based on EMG Signal (근전도로부터 동적 근력 산정을 위한 수학적 모델 개발)

  • 한정수;정구연;이태희;안재용
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.315-321
    • /
    • 1999
  • The purpose of this study is to develop a mathematical model for system identification in order to predIct muscle force based on eledromyographic signal. Therefore, a finding of the relalionship between characteristics of electromyographic signal and the corre spondng muscle force should be necessiiry through dynamic, joint model. To develop the dynamic joint model, the upper limb mcludmg the wrist and elbow joint has been considered. The kinematic and dynamic data, such as joint angular displacement, velocity, deceleration along with the moment of inertla, required to establish the dynamic model has been obtained by electrical flexible goniometer which has two degree-of-frcedoms. ln this model, muscle force can be predicted only electromyographs through the relationship between the integrated lorce and the mtegrated electromyographic signal over the duration of muscle contraclion in this study.

  • PDF

Micromechanical Analysis on Anisotropic Elastic Deformation of Granular Soils (미시역학을 이용한 사질토의 이방적 탄성 변형 특성의 해석)

  • 정충기;정영훈
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.99-107
    • /
    • 2004
  • Anisotropic characteristics of deformation are important to understand the particular behavior in the pre-failure state of soils. Recent experiments show that cross-anisotropic moduli of granular soils can be expressed by functions of normal stresses in the corresponding directions, which is closely linked to micromechanical characteristics of particles. Granular soils are composed of a number of particles so that the force-displacement relationship at each contact point governs the macroscopic stress-strain relationship. Therefore, the micromechanical approach in which the deformation of granular soils is regarded as a mutual interaction between particle contacts is one of the best ways to investigate the anisotropic elastic deformation of soils. In this study, a numerical program based on the theory of micromechanics is developed. Generalized contact model for the irregular contact surface of soil particles is adopted to represent the force-displacement relationship in each contact point far the realistic prediction of anisotropic moduli. To evaluate the model parameters, a set of analytical solutions of anisotropic elastic moduli is derived in the isotropic stress condition. A detailed procedure to determine the model parameters is proposed with emphasis on the practical applicability of micromechanical program to analyze the elastic behavior of the granular soils.

Stiffness evaluation of elastomeric bearings for leg mating unit (LMU용 일래스토머릭 베어링의 강성평가)

  • Han, Dong-Seop;Jang, Si-Hwan;Lee, Kwon-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.106-111
    • /
    • 2017
  • In this study, the stiffness of an LMU (Leg Mating Unit), which is a device required for installing the top side part of an offshore structure, was examined through structural analysis. This unit is mounted on the supporting point of the structure and is used to absorb the shock at installation. It is a cylindrical structure with an empty center. To support the vertical load, elastomeric bearings (EBs) and iron plates are laminated in layers. The stiffness of the EBs is basically influenced by the size of the bearings, but it varies with the number of laminated sheets inside the same sized structure. The relationship between the stiffener and the compressive stiffness is investigated, and its design is suggested. The stiffness of the EBs is analyzed by calculating the reaction force, while controlling the displacement. First, the relationship between the size of the reinforcing plate and the compressive stiffness is considered. Next, the relationship between the number of stacked reinforcing plates and the compression stiffness is considered. Different loads are required for each installed point. The goal is to design the compression stiffness in such a way that the same deformation occurs at each point in the analysis. In this study, ANSYS is used to perform the FE analysis.

Evaluation of Stability of Lining Systems of Landfill Using Discrete Element Method (개별요소법을 사용한 매립지 사면 차수 시스템의 안정성 평가)

  • 박현일;이승래;정구영
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.87-95
    • /
    • 2003
  • In this paper, the discrete element method was applied to evaluate the stability of composite cover and lining system of landfill. This method is capable of estimating the distribution of tensile force and shear stress mobilized in each liner component and its interfaces, based on a relationship of force and displacement. It was assumed that the cover soil and geomembrane were comprised of slices connected with elastoplastic Winkler springs and tensile spring respectively. Parametric study using this method was performed and compared with other techniques based on limit equilibrium method fur the example analysis.

Development and Shear Performance Evaluation of Vertical Joints between Precast Concrete Walls (PC 벽체 수직접합부의 개발 및 전단성능 평가)

  • Moon, Kyo Young;Kim, Sung Jig;Lee, Kihak;Kim, Yong Nam
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.4
    • /
    • pp.81-88
    • /
    • 2022
  • The paper introduces an experimental program for the newly developed vertical joints between Precast Concrete (PC) walls to improve their in-plane shear capacity. Compared to the existing vertical joints, two types of vertical joints were developed by increasing the transverse reinforcement ratio and improving frictional force at the joint interface. A total of four specimens including the Reinforced Concrete (RC) wall and PC walls with developed vertical joints were designed and constructed. The constructed specimens were experimentally investigated through monotonic shear tests. The observed damage, load-deformation relationship, strain and strength are investigated and compared with the cases of RC wall specimen. Experimental results indicate that the maximum force and initial stiffness of the PC wall with proposed vertical joints were decreased by comparing with those of RC wall. However, the ultimate displacement increased by up to 217.30% compared to the RC wall specimen. In addition, brittle failure did not occurred and relatively few cracks and damages occurred.

A Case Report on the Treatment of A TMJ Osteoarthritis Patient with Anterior Open Bite Using An Intermaxillary Traction Device (전치부 개교합을 동반한 골관절염 환자에 대한 악간견인장치의 응용)

  • 류상수;김선희;기우천
    • Journal of Oral Medicine and Pain
    • /
    • v.23 no.4
    • /
    • pp.379-385
    • /
    • 1998
  • A patient with TMJ osteoarthritis and anterior open bite was treated with an intermaxillary traction device. Pretreatment examination revelaed a pain in both TMJ during mouth opening, moderate tendernesso f left sternocleidomastoid and right trapezius muscles. Anterior open Bite was aobserved with interincisal distance of 2mm. Tomograms and MRI showed anterior disc displacement withouit reductoin of both temporomandibular joints, and the condyles were flattened and slightly eroded. A pair of full-coverage occlusal appliances was made on both maxillary and mandibular dentition, with pivoting fulcrum on the site of the second moalr. Traction force was gained by the intermaxillary orthodontic elastics which were hooked by orthodontic brackets on the labial surfaces of the upper and lower anterior and premolar teeth. After 8 weeks of traction treatment, the joint pain was subsided completely and the anterior open bite was closed to get an edge to edge relationship of anterior teeth.

  • PDF

Clinical Features of the Recurred Patients with Temporomandibular Disorders (측두하악장애 재발환자의 임상양태에 관한 연구)

  • 고명연;박준상
    • Journal of Oral Medicine and Pain
    • /
    • v.23 no.4
    • /
    • pp.369-377
    • /
    • 1998
  • A patient with TMJ osteoarthritis and anterior open bite was treated with an intermaxillary traction device. Pretreatment examination revelaed a pain in both TMJ during mouth opening, moderate tendernesso f left sternocleidomastoid and right trapezius muscles. Anterior open Bite was aobserved with interincisal distance of 2mm. Tomograms and MRI showed anterior disc displacement withouit reductoin of both temporomandibular joints, and the condyles were flattened and slightly eroded. A pair of full-coverage occlusal appliances was made on both maxillary and mandibular dentition, with pivoting fulcrum on the site of the second moalr. Traction force was gained by the intermaxillary orthodontic elastics which were hooked by orthodontic brackets on the labial surfaces of the upper and lower anterior and premolar teeth. After 8 weeks of traction treatment, the joint pain was subsided completely and the anterior open bite was closed to get an edge to edge relationship of anterior teeth.

  • PDF

Control of a 3-Phase VR Type Self-Bearing Step Motor (3상 가변형 셀프 베어링 스텝모터의 제어)

  • Kim, Dae-Gon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1974-1980
    • /
    • 2001
  • The control algorithm of a new type self-bearing step motor is presented. The motor actuator is used for both motor and bearing functionality without any redundant coil windings or redundant electromagnets. The self$.$bearing step motor layout and its control method are described. A linearized farce-current-displacement relationship is derived. As the result of the unbalance response approach, the constant torque production is possible fur the supply current regulation algorithm. And even if the bearing functionality is added in the motor functionality, no additional current for bearing functionality is possible, and this leads to minimize the net power loss. Also, the unbalance response shows the independent bearing force and motor torque.

Seismic performances of steel reinforced concrete bridge piers

  • Deng, Jiangdong;Liu, Airong;Yu, Qicai;Peng, Guoxing
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.661-677
    • /
    • 2016
  • The quasi static test of the steel reinforced concrete (SRC) bridge piers and rigid frame arch bridge structure with SRC piers was conducted in the laboratory, and the seismic performance of SRC piers was compared with that of reinforced concrete (RC) bridge piers. In the test, the failure process, the failure mechanism, hysteretic curves, skeleton curves, ductility coefficient, stiffness degradation curves and the energy dissipation curves were analyzed. According to the $M-{\Phi}$ relationship of fiber section, the three-wire type theoretical skeleton curve of the lateral force and the pier top displacement was proposed, and the theoretical skeleton curves are well consistent with the experimental curves. Based on the theoretical model, the effects of the concrete strength, axial compression ratio, slenderness ratio, reinforcement ratio, and the stiffness ratio of arch to pier on the skeleton curve were analyzed.