• 제목/요약/키워드: Displacement ventilation

Search Result 26, Processing Time 0.021 seconds

Experimental Study on Removal Characteristics of Indoor Suspended Particulates by Ventilation. (환기에 의한 실내 부유오염입자 제거특성에 관한 실험적 연구)

  • Kang, Tae-Wook
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.133-139
    • /
    • 2005
  • In this paper, the ventilation performance of suspended particulates in indoor side was investigated by step-down method. Experiments were performed in function of mechanical ventilation types and locations of supply and extract air. The type 2 ventilation system shows the highest removal characteristics rather than other 2 types. It means that the displacement ventilation has also good decay rates of concentration compared to mixing ventilation.

Thermal environment evaluation of KBS open hall with mixing ventilation and downward displacement ventilation systems (혼합환기와 하향 압출환기시스템이 동반된 KBS공개홀의 온열환경 평가)

  • 권용일;권순석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.147-154
    • /
    • 1998
  • This study was carried out for evaluating the interior thermal environment in KBS Open hall with large ceiling height and large space. Ventilation systems of KBS Open hall have combined mixing ventilation and downward displacement ventilation system. Temperature and velocity was measured 130 locations with low level(0.1m), mid level(0.6m) and high level(1.1m). But relative humidity was measured at 15 locations. The subjective thermal sensation was made an inquiry of occupancy at the location measured physical elements.

  • PDF

A Study on Ventilation Effectiveness in the Non-isothermal Supply using Mixing and Displacement Ventilation Systems (비등온 급기조건에서 환기방식에 따른 환기효율 특성에 관한 연구)

  • 이재근;강태욱;윤석구;구재현;한정균;조민철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.739-745
    • /
    • 2001
  • The objective of this research is to analyze the ventilation effectiveness in the non-isothermal air supply using mixing and displacement ventilation systems for indoor air quality control and management. In this study, a ventilation effectiveness is evaluated in a simplified model chamber using a tracer gas technique of $CO^2$ gas injected into a supply duct as a function of ventilation rates, supply/extract sites and cooling/heating air supply. The ventilation effectiveness decreased with increasing ventilation rate on the cooling and heating conditions. And the ventilation effectiveness of case 3 (down supply and upper extract) was better thant that of case 1(upper supply and upper extract) and case 2(upper supply and down extract) with the cooling supply conditions. but for the heating supply air conditions, the ventilation effectiveness of case 2 was better than that of case 3 and case 1.

  • PDF

Improvement of Indoor Air Environment in a Large Welding Factory by Displacement Ventilation (변위환기를 이용한 대형 용접작업장의 공기환경 개선에 관한 연구)

  • Cho, Dong-Hwan;Kang, Seok-Youn;Choi, Choong-Hyun;Im, Yun-Chul;Lee, Jae-Heon;Moon, Jung-Hwan
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.69-74
    • /
    • 2005
  • In this paper, the indoor air environment in a large welding factory applied to displacement ventilation was investigated with experiment and numerical analysis for previous and new ventilation system. Concentration of fumes was analyzed for three cases with wind direction of outdoor. For experimental results, the dust concentration with new ventilation system decreased about 42-60% and the visibility increased about 11-18%. For numerical analysis, the exhaust efficiency of fumes was low when the wind and exhaust flow direction was inverse. It was found that the fumes in the factory decreased about 77% in case of the northern wind.

  • PDF

Examination of Airflow and Thermal Environment Characteristic around Human Body in a Room with Displacement Ventilation (치환환기되는 실내에 있어서 인체주변의 기류 및 온열환경 특성에 대한 검토)

  • Yang, Jeong-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.4
    • /
    • pp.299-306
    • /
    • 2007
  • Recently, the numerical analysis using person shape model for CFD (Computational Fluid Dynamic) has been researched widely for the thermal comfort and inhaled air quality of human body in the indoor environments. The purpose of this research is to examine the characteristic of airflow and thermal environment around human body by the experiment of displacement ventilation that assumes the indoor environment of natural convection. In this study, thermal manikin was used instead of real human body. The Airflow characteristic around human body was measured in precision by PIV (Particle Image Velocimetry). This experimental result will be used as data for CFD benchmark test using person shape model.

A Study on the Ventilation Performance Estimation of Marketing Ventilation Fan Used in the Apartment House Kitchen (공동주택의 주방에서 사용되는 시판 환풍기의 환기 성능 평가에 관한 연구)

  • 송필동;함진식
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2002.11a
    • /
    • pp.315-320
    • /
    • 2002
  • Marketing ventilation fan 3 kinds been using in kitchen of apartment house into compensation discharge performance of contaminant measure. When propane gas burns by gas table, did waste heat into measurement compensation with carbon dioxide that it happens. In measured all type of exhaust fan, discharge performance of carbon dioxide and waste heat was high there are been much displacement. Among A, B, C three types, performance of A type exhaust fan was most superior and performance of C type exhaust fan was most poor

  • PDF

Influence of Evjenth-Hamberg Stretching on the Lung Function of Adults with Forward Head Posture

  • Kim, Nyeon Jun;Koo, Ja Pung
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.9 no.4
    • /
    • pp.1663-1668
    • /
    • 2018
  • This study was conducted to examine the effects of Evjenth-Hamberg stretching of the sternocleidomastoid, upper trapezius, and pectoralis major on the lung function of adults with forward neck posture. The subjects were 20 adult students in P university located in Pohang, Korea, whose degree of head forward displacement measured according to NEW YORK state posture test was mild. The subjects were randomly and equally assigned to the Evjenth-Hamberg Stretching group (EHSG, n=10) and the control group (CG, n=10). Their forced vital capacity (FVC), slow vital capacity (SVC), and maximal voluntary ventilation (MVV) were measured before and after the experiment. In within-group comparison, only the EHSG experienced statistically significant improvement in FVC, forced expiratory volume in the first second (FEV1), and peak expiratory flow (PEE) after the experiment, compared to before the experiment (.05

The Study on the Prediction and Measurement for the Behaviour of Structures and Weathered Soil & Rock in Excavating the Ventilation Shaft (지하철 개착구 굴착시 주변자반과 구조물에 대한 거동예측과 실측의비교평가)

  • 김융태;안대영;김득기;한창헌
    • Tunnel and Underground Space
    • /
    • v.4 no.1
    • /
    • pp.63-76
    • /
    • 1994
  • This paper discusses contents of the existing design, the behaviours prediction on the strut and retaining wall around subsurfaces, and also evaluates the measured results in comparison with the management criterion during excavation period of ventilation shaft at Pusan-Subway 220. Field measurements showed that maximum displacement 23.74 mm at boundary site of multistratification and the weathered rock to be formed at 0.2~0.6 H of total excavating depth(H), 68 ton of maximum axial force and 4.4X102 kg/cm2 of stress on strut. The measured axial force exceeds prediction levels by up to 50 percent at the weathered soil & rock, and the others come under the category of their levels. The great gap of both field measurements and prediction on behaviour makes a difference of the site situation at the design stage and the practical working. This measured value is greatly safety in comparison with that of the safety criterion, but axial force at 4~5 strut of ventilation shaft l is higher than the prediction.

  • PDF

Multi-dimensional wind vibration coefficients under suction for ultra-large cooling towers considering ventilation rates of louvers

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.273-283
    • /
    • 2018
  • Currently, the dynamic amplification effect of suction is described using the wind vibration coefficient (WVC) of external loads. In other words, it is proposed that the fluctuating characteristics of suction are equivalent to external loads. This is, however, not generally valid. Meanwhile, the effects of the ventilation rate of louver on suction and its WV are considered. To systematically analyze the effects of the ventilation rate of louver on the multi-dimensional WVC of ultra-large cooling towers under suctions, the 210 m ultra-large cooling tower under construction was studied. First, simultaneous rigid pressure measurement wind tunnel tests were executed to obtain the time history of fluctuating wind loads on the external surface and the internal surface of the cooling tower at different ventilation rates (0%, 15%, 30%, and 100%). Based on that, the average values and distributions of fluctuating wind pressures on external and internal surfaces were obtained and compared with each other; a tower/pillar/circular foundation integrated simulation model was developed using the finite element method and complete transient time domain dynamics of external loads and four different suctions of this cooling tower were calculated. Moreover, 1D, 2D, and 3D distributions of WVCs under external loads and suctions at different ventilation rates were obtained and compared with each other. The WVCs of the cooling tower corresponding to four typical response targets (i.e., radial displacement, meridional force, Von Mises stress, and circumferential bending moment) were discussed. Value determination and 2D evaluation of the WVCs of external loads and suctions of this large cooling tower at different ventilation rates were proposed. This study provides references to precise prediction and value determination of WVC of ultra-large cooling towers.