• 제목/요약/키워드: Displacement ratio

검색결과 1,511건 처리시간 0.03초

Evaluation and Improvement of Deformation Capacities of Shear Walls Using Displacement-Based Seismic Design

  • Oh, Young-Hun;Han, Sang-Whan;Choi, Yeoh-Soo
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권1E호
    • /
    • pp.55-61
    • /
    • 2006
  • RC shear walls are frequently used as lateral force-resisting system in building construction because they have sufficient stiffness and strength against damage and collapse. If RC shear walls are properly designed and proportioned, these walls can also behave as ductile flexural members like cantilevered beams. To achieve this goal, the designer should provide adequate strength and deformation capacity of shear walls corresponding to the anticipated deformation level. In this study, the level of demands for deformation of shear walls was investigated using a displacement-based design approach. Also, deformation capacities of shear walls are evaluated through laboratory tests of shear walls with specific transverse confinement widely used in Korea. Four full-scale wall specimens with different wall boundary details and cross-sections were constructed for the experiment. The displacement-based design approach could be used to determine the deformation demands and capacities depending on the aspect ratio, ratio of wall area to floor plan area, flexural reinforcement ratio, and axial load ratio. Also, the specific boundary detailing for shear wall can be applied to enhance the deformation capacity of the shear wall.

Seismic responses of structure isolated by FPB subject to pounding between the sliding interfaces considering soil-structure interaction

  • Yingna Li;Jingcai Zhang
    • Earthquakes and Structures
    • /
    • 제26권6호
    • /
    • pp.463-475
    • /
    • 2024
  • The study aims to investigate the pounding that occurs between the isolator's ring and slider of isolated structures resulting from excessive seismic excitation, while considering soil-structure interaction. The dynamic responses and poundings of structures subjected a series seismic records were comparatively analyzed for three different soil types and fixed-base structures. A series of parametric studies were conducted to thoroughly discuss the effects of the impact displacement ratio, the FPB friction coefficient ratio, and the radius ratio on the structural dynamic response when considering impact and SSI. It was found that the pounding is extremely brief, with an exceptionally large pounding force generated by impact, resulting in significant acceleration pulse. The acceleration and inter-story shear force of the structure experiencing pounding were greater than those without considering pounding. Sudden changes in the inter-story shear force between the first and second floors of the structure were also observed. The dynamic response of structures in soft ground was significantly lower than that of structures in other ground conditions under the same conditions, regardless of the earthquake wave exciting the structure. When the structure is influenced by pulse-type earthquake records, its dynamic response exhibits a trend of first intensifying and then weakening as the equivalent radius ratio and friction coefficient ratio increase. However, it increases with an increase in the pounding displacement ratio, equivalent radius ratio, friction coefficient ratio, and displacement ratio when the structures are subjected to non-pulse-type seismic record.

쏘일네일 보강벽체의 수평변위와 안전율과의 관계 분석연구 (An Analytical Study on the Relationship between Factor of Safety and Horizontal Displacement of Soil Nailed Walls)

  • 김홍택;이인
    • 한국지반환경공학회 논문집
    • /
    • 제12권2호
    • /
    • pp.45-53
    • /
    • 2011
  • 쏘일네일 공법은 일반적으로 한계평형해석법을 토대로 검토한 사면안정해석결과를 이용하여 설계기준안전율 이상을 만족하면 안정한 것으로 판단하여 설계하고 있다. 그러나 쏘일네일의 길이가 짧은 경우 설계기준안전율을 만족하고도 발생변위가 과다하여 사용상에 문제가 발생하는 경우가 있다. 본 연구는 대형파괴재하시험결과에 의한 재하하중-안전율 및 재하하중-발생변위비와의 관계를 분석하여 쏘일네일 보강벽체의 안전율-발생변위비와의 상관관계를 분석하였으며, 분석결과 쏘일네일 보강벽체의 사용한계상태에 해당하는 발생 변위비 0.3% 이내를 만족하기 위해서는 한계평형해석에 의한 안전율이 최소 1.35 이상을 확보하여야 할 것으로 평가되었다. 또한 한계평형해석결과 최소 안전율 1.35 이상을 만족하여도 지반의 전단강도가 작거나 벽체높이가 높을 경우 사용한계상태에 해당하는 발생 변위비 0.3% 이내를 만족하지 못하는 경우가 있어 수치해석을 통한 발생변위 검토가 필요할 것으로 판단된다.

정밀 스테이지에서 출력변위 확대를 위한 레버의 해석 (Theoretical Analysis of Levers in a Precision Stage for Large Displacement)

  • 황은주;민경석;송신형;최우천
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.720-723
    • /
    • 2004
  • Lever mechanisms are usually employed to enlarge output displacement in precision stages. In this study, theoretical analysis of a lever is presented including bending effect and relation between dimension parameters and an objective function. The objective function is chosen as multiplication of magnification ratio and forcedisplacement transmission. Through theoretical analysis, this study presents optimal values for the parameters and the analysis is verified by finite element method.

  • PDF

Investigating the load-displacement restorative force model for steel slag self-stressing concrete-filled circular steel tubular columns

  • Feng Yu;Bo Xu;Chi Yao;Alei Dong;Yuan Fang
    • Steel and Composite Structures
    • /
    • 제49권6호
    • /
    • pp.615-631
    • /
    • 2023
  • To investigate the seismic behavior of steel slag self-stressing concrete-filled circular steel tubular (SSSCFCST) columns, 14 specimens were designed, namely, 10 SSSCFCST columns and four ordinary steel slag (SS) concrete (SSC)-filled circular steel tubular (SSCFCST) columns. Comparative tests were conducted under low reversed cyclic loading considering various parameters, such as the axial compression ratio, diameter-thickness ratio, shear-span ratio, and expansion ratio of SSC. The failure process of the specimens was observed, and hysteretic and skeleton curves were obtained. Next, the influence of these parameters on the hysteretic behavior of the SSSCFCST columns was analyzed. The self stress of SS considerably increased the bearing capacity and ductility of the specimens. Results indicated that specimens with a shear-span ratio of 1.83 exhibited compression bending failure, whereas those with shear-span ratios of 0.91 or 1.37 exhibited drum-shaped cracking failure. However, shear-bond failure occurred in the nonloading direction. The stiffness of the falling section of the specimens decreased with increasing shear-span ratio. The hysteretic curves exhibited a weak pinch phenomenon, and their shapes evolved from a full shuttle shape to a bow shape during loading. The skeleton curves of the specimens were nearly complete, progressing through elastic, elastoplastic, and plastic stages. Based on the experimental study and considering the effects of the SSC expansion rate, shear-span ratio, diameter-thickness ratio, and axial compression ratio on the seismic behavior, a peak displacement coefficient of 0.91 was introduced through regression analysis. A simplified method for calculating load-displacement skeleton curves was proposed and loading and unloading rules for SSSCFCST columns were provided. The load-displacement restorative force model of the specimens was established. These findings can serve as a guide for further research and practical application of SSSCFCST columns.

점성토 시료추출관이 시료교란에 미치는 영향 (Effect of Thin Wall Tube on Clay Soil Disturbance during Sampling)

  • 임성훈
    • 한국농공학회논문집
    • /
    • 제51권5호
    • /
    • pp.51-58
    • /
    • 2009
  • The total recovery ratio test on undisturbed clay soil sampling in the field and the finite element method analysis on modified static state of penetration process were conducted for the purpose of deciding the most important factor among the shape factors of thin wall tube. The adhesion between tube wall and soil did not decrease although internal clearance ratio of tube increased within the little change of tube area ratio. The most part of disturbance occurred in the tip of sampling tube during the penetration. The longitudinal displacement was larger than the lateral displacement because soil was confined laterally after being entered into tube, and also the longitudinal displacement was larger in the upper part of the sample tube than in the lower part.

CSA계 혼화재 치환율 병화에 따른 콘크리트의 물리적 성질 (Physical Properties of Concrete with the Contents of CSA Expansive Admixture)

  • 배장춘;박영신;이문환;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.369-372
    • /
    • 2005
  • This study is about physical properties of concrete with changing displacement ratio of calcium sulfa aluminates(CSA) type admixture. Firstly, test shows that as displacement ratio of CSA increases and setting properties changes, fluidity and air contents decreases. In water to binder ratio 35$\%$ and 45$\%$, concrete using the cement replacing CSA 4$\%$ by volume shows that bleeding decreases 94.7$\%$ and 74.3$\%$ respectively, compared with plain concrete. In addition, setting time was promoted around 3 to 6 hour and 1 to 4 hour respectively. For harden concrete, increase of displacement ratio caused tendency of higher compressive strength as OPC has at early age. Replacing higher CSA admixture led to reduce of drying shrinkage.

  • PDF

Load-ratio 법에 의한 SA508C-3와 알루미늄 합금의 탄소성 파괴저항 곡선평가 (Evaluation on elastic-plastic fracture resistance curve of SA508C-3 and aluminum alloy steels by load-ratio method)

  • ;윤한기;차귀준
    • 한국해양공학회지
    • /
    • 제10권2호
    • /
    • pp.98-105
    • /
    • 1996
  • A method is proposed to evaluate the elastic-plastic fracture resistance curve only with load displacement records without the crack length measurement in CT specimen. This method is based on the idea that the effect of plastic deformation and the crack growth can be measured only by using a load-displacement record. If we know the reference-load curve representing the hardening of specimen, then the crack extension can be calculated by the elastic compliance determined from the load ratio. The results of this proposed method were compared to those of the elastic-plastic fracture resistance curve for the ASTM standard unloading compliance method. The experimental results for two kinds of ductile materials showed that the proposed method well simulates the material J-R curves. This method is currently applied for CT specimens. but it can be extended to the other specimen geometries.

  • PDF

다자유도 철근 콘크리트 모멘트 골조의 Steel Jacket보강 내진성능개선 (Seismic Performance Improvement of MDOF Reinforced Concrete Moment Frame Retrofitted Steel Jacket)

  • 김준영;정인규;박순응
    • 한국공간구조학회논문집
    • /
    • 제13권1호
    • /
    • pp.69-77
    • /
    • 2013
  • This study is the research appling the representative Displacement-Based Design which is the basic concept of Direct Displacement Based Design proposed by Chopra and Goel to original Reinforced Concrete moment frame and determining the thickness of retrofit Steel Jacket about the Maximum design ground acceleration, and developing the more improved Algorithm as well as program by the Retrofit Design method and Nonlinear analysis by the Performance design method before and after reinforcement appling the determined retrofit thickness. It also shows the result of the seismic performance improvement which is the ratio of seismic performance appreciation result yield displacement 19%, yield strength ratio 24%, displace ductility ratio the maximum 27% comparing Multi degree of freedom, column member of Reinforced Concrete with the performance improvement column member considering the thickness of the determined Steel Jacket. The developed Algorithm and program are easy to apply seismic design and application to the original Reinforced Concrete building, at the same time, it applicate to display well the design result of Target displacement performance level about nonlinear behavior.

호안기초로서 저치환율 모래다짐말뚝 공법의 적용 (Application of sand compaction pile method of row replacement ratio as foundation of the dyke)

  • 진성기;김범형;김종석;임종철
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.472-485
    • /
    • 2008
  • In this study, sand compaction pile method was adopted to improve the soft ground under the permanent dyke, namely west sea dyke of Incheon New Port. The row replacement ratio 30% was applied to consider the ground condition, environmental side and the construction cost of the site. The stability and displacement analysis was carried out by respectively SLOPE/W and PLAXIS 2D program. Based on this analysis, it is found that the safety factor and displacement is within an allowable criteria. The model experiment was carried out using the acryl soil box with $400(H){\times}1200(L){\times}250(W)mm$ to show the displacement of the dyke and behavior of soft ground. Based on this experiment results, it is found that the settlement does not occur from 1 and 2 loading phases and horizontal displacement of 0.0075% occurs from 2 phases. It is also found that the differential settlement occurs 0.05mm corresponding respectively 0.02% and 0.03% of the dyke height(15cm).

  • PDF