• Title/Summary/Keyword: Displacement inspection

Search Result 335, Processing Time 0.033 seconds

Seismic Performance Evaluation of Masonry Walls Retrofitted with Semi-buried Lattice Reinforcement (조적식 구조물의 부분 매입식 격자철근 보강기법의 내진 성능 평가)

  • Kim, Sang Hyo;Choi, Moon Seock;Park, Se Jun;Ahn, Jin Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.88-98
    • /
    • 2011
  • Masonry structure is a style of building which has been widely applied as residential facilities of low and middle stories, commercial and public facilities etc. But it is possible to destroy by loss of adhesive strength or sliding when lateral forces, such as earthquake, occurs. This study proposes a seismic retrofit method for masonry structure and its seismic performance is demonstrated by shaking table test. Two specimens per each shaking direction were made, having out-of-plane(weak axis) and in-plane(strong axis) direction. External load of 1 ton was also applied for each specimen during the test, to model the behavior of reinforced masonry wall. As a result of shaking table tests, it is shown that the specimen applying the proposed seismic retrofit method showed acceptable behaviors in both of Korea building design criteria(0.14g) and USA seismic criteria suggested by IBC(0.4g). However, it was observed that stiffness of the specimen toward out-of-plane was rapidly decreasing when seismic excitations over 0.14g were loaded. In comparison of relative displacements, maximum relative displacement of specimens which were accelerated toward out-of-plane with 0.4g at once was 29~31% of maximum relative displacement when specimens were gradually accelerated from 0.08g to 0.4g, while the maximum relative displacement of specimens accelerated toward in-plane has similar value in both cases. Therefore, it is concluded that the wall accelerated toward out-of-plane is more affected by hair crack or possible fatigues caused by seismic excitation.

Sensitivity Analysis for Unit Module Development of Hybrid tube Structural System (복합 튜브 구조시스템의 단위 모듈 개발에 대한 민감도 해석)

  • Lee, Yeon-Jong;Park, Sung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.167-175
    • /
    • 2018
  • This research deals, The characteristics of mechanics and behavior of the tube structural systems, It has been investigated and considered conventional theory and case models, It has shown the suitability, The best location, And optimal shape of the unit module system, Considered variables materials of stiffness increase and decrease in hybrid tube structural systems this study carried out adapting analysis of statistical concepts. In a concrete way, This study exams the effect of reducing horizontal displacement and the shear lag phenomenon, Also, The purpose of this study is to utilize the basic data on the design and study of future high-rise hybrid structural system using this research. As a result, The framed- tube structural system does not effectively cope with horizontal behavior of high-rise buildings, The results of using varying material tested resistance factors and lateral loads in hybrid tube structural system, When each material is compared Bracing material is identified as a key factor in lateral behavior. In a ratio of material quantity framed-tube structural system, The level of sensitivity affecting the horizontal displacement is greater then the beam's column, In case of braced tube structural system, Braced appeared to be most sensitive in comparison of material quantity ratio in columns and beams.

Control of Bending Behavior of Simple Beams Using CTMD (CTMD의 질량비에 따른 단순보의 휨거동 제어효과)

  • Heo, Gwang-Hee;Seo, Sang-Gu;Kim, Chung-Gil;Jeon, Seung-Gon;Kim, Min-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.12-18
    • /
    • 2021
  • The purpose of this study is to effectively mitigate the bending displacement that occurs in the bridge due to forced vibration. We developed CTMD (Combine Tuned Mass Damper) that combines the relationship between spring and mass to control the bending behavior of simple beams. The experiment was conducted to confirm the control effect according to the change in the mass ratio of the developed CTMD. The developed CTMD is designed and manufactured so that the mass ratio can be adjusted according to the characteristics of the bridge. The maximum load of the spring applied to CTMD was fixed at 33.15 N. In order to evaluate the performance of the developed CTMD, a simple beam composed of hinges and rollers as boundary conditions was fabricated. In the experimental method, a CTMD was installed in the center of a simple beam and the deflection displacement according to the mass ratio was measured. The shaking condition was shaken at 3 Hz to induce the maximum bending behavior of the simple beam. As a result of the experiment, it was confirmed that when the optimal mass ratio was 2.1, the damping rate of the bending behavior displacement was about 71.2 %, indicating the best control effect.

Load-Displacement Relationship of Passive Vibration Units Composed with a Spring and Vibration-Proof Rubbers (스프링과 방진고무가 융합된 제진장치의 하중-변위 관계)

  • Mun, Ju-Hyun;Im, Chae-Rim;Wang, Hye-Rin;Yang, Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.226-234
    • /
    • 2021
  • The objective of this study is to establish the fundamental design data for axial load-displacement relationship under axial monotonic or cyclic responses of seismic damping·isolation (SDI) units developed for ceiling structures. The main parameters include the installation of a spring, the number of rubber layer, prestress stress of bolts for connector between the spring and rubbers, and loading type. Test results showed that SDI units with a spring in the core and higher prestress stress of bolts tended to be higher stiffness at the ascending branch and more ductile behavior at the descending branch. This trends more notable for the specimens under monotonic load rather than cyclic loads. Consequently, the energy dissipation of SDI unit can be optimally designed with the following conditions: installation of a spring within 3-layer rubbers and prestress applied to the bolts at 10% of their yielding strength . When compared with the experimental tension capacity of the developed SDI units, the predictions by JIS B 2704-1 and KDS 31 00 are conservative under monotonic loading but higher by approximately 10% under cyclic loading.

Application of Damage Index for Limit State Evaluation of a Steel Pipe Tee (강재 배관 Tee의 한계상태 평가를 위한 손상지수의 적용)

  • Kim, Sung-Wan;Yun, Da-Woon;Jeon, Bub-Gyu;Kim, Seong-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.30-39
    • /
    • 2022
  • Maintaining structural integrity of major apparatuses in a nuclear power plant, including piping system, is recognized as a critical safety issue. The integrity of piping system is also a critical matter related to the safety of a nuclear power plant. The actual failure mode of a piping system due to a seismic load is the leakage due to a fatigue crack, and the structural damage mechanism is the low-cycle fatigue due to large relative displacement that may cause plastic deformation. In this study, in-plane cyclic loading tests were conducted under various constant amplitudes using specimens composed of steel straight pipes and a steel pipe tee in the piping system of a nuclear power plant. The loading amplitude was increased to consider the relative displacement generated in the piping system under seismic loads, and the test was conducted until leakage, which is the limit state of the steel pipe tee, occurred due to fatigue cracks. The limit state of the steel pipe tee was expressed using a damage model based on the damage index that used the force-displacement relationship. As a result, it was confirmed that the limit state of the steel pipe tee can be quantitatively expressed using the damage index.

Investigating the Influence of Rate Dependency and Axial Force on the Seismic Performance Evaluation of Isolation Bearing (면진받침의 내진성능평가를 위한 실험 시 속도의존성과 수직하중의 영향)

  • Minseok Park;Yunbyeong Chae;Chul-Young Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.22-29
    • /
    • 2023
  • In the evaluation of seismic performance for structural materials and components, the loading rate and axial force can have a significant impact. Due to time-delay effects between input and output displacements, It is difficult to apply high-rate displacement in cyclic tests and hybrid simulations. Additionally, the difficulty of maintaining a consistent vertical load in the presence of lateral displacement has limited fast and real-time tests performed while maintaining a constant vertical load. In this study, slow, fast cyclic tests and real-time hybrid simulations were conducted to investigate the rate dependency and the influence of vertical loads of Isolation Bearing. In the experiment, the FLB System including an Adaptive Time Series (ATS) compensation and a state estimator was constructed for real-time control of displacement and vertical load. It was found that the vertical load from the superstructure and loading rate can have a significant impact on the strength of the seismic isolation bearing and its behavior during an earthquake. When conducting experiments for seismic performance evaluation, they must be implemented to be similar to reality. This study demonstrates the excellent performance of the system built and used for seismic performance evaluation and enables accurate and efficient seismic performance evaluation.

A Study on the Optimization Period of Light Buoy Location Patterns Using the Convex Hull Algorithm (볼록 껍질 알고리즘을 이용한 등부표 위치패턴 최적화 기간 연구)

  • Wonjin Choi;Beom-Sik Moon;Chae-Uk Song;Young-Jin Kim
    • Journal of Navigation and Port Research
    • /
    • v.48 no.3
    • /
    • pp.164-170
    • /
    • 2024
  • The light buoy, a floating structure at sea, is prone to drifting due to external factors such as oceanic weather. This makes it imperative to monitor for any loss or displacement of buoys. In order to address this issue, the Ministry of Oceans and Fisheries aims to issue alerts for buoy displacement by analyzing historical buoy position data to detect patterns. However, periodic lifting inspections, which are conducted every two years, disrupt the buoy's location pattern. As a result, new patterns need to be analyzed after each inspection for location monitoring. In this study, buoy position data from various periods were analyzed using convex hull and distance-based clustering algorithms. In addition, the optimal data collection period was identified in order to accurately recognize buoy location patterns. The findings suggest that a nine-week data collection period established stable location patterns, explaining approximately 89.8% of the variance in location data. These results can improve the management of light buoys based on location patterns and aid in the effective monitoring and early detection of buoy displacement.

Stable lateral-shearing interferometer for in-line inspection of aspheric pick-up lenses (생산 라인에서의 광 Pick-up용 비구면 대물 렌즈 측정을 위한 안정된 층밀리기 간섭계)

  • 조우종;김병창;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.189-193
    • /
    • 1997
  • Aspheric pick-up lenses are increasingly used in consumer products such as computer and multimedia, as their mass production has become possible owing to the injection molding process. However still much work needs to be done for more effective manufacture of aspheric lenses, one area of which is the in-line inspection of produced lenses. In this paper, we present a lateral-shearing interferometer that has specially been designed to have a high immunity to external vibration and atmospheric disturbance. The interferometer comprises four prisms. They are directly attached to each other using an immersion oil so that relative sliding motions between the prisms are allowed. Their relative displacement can readily generate necessary lateral-shearing and phase-shifting to determine the wavefront of the beam collimated by the lens under inspection. A special phase-measuring algorithm of arbitrary-bucket is adopted to compensate the phase-shifting error caused by the thickness reduction in the immersion oil. Zernike polynomial fitting has done for determinating quantitative aberration of aspheric pick-up lenses. The interferometer built in this work is robust to external mechanical vibration and atmospheric disturbance so that experimental results show that it has a repeatability of less than λ/100.

  • PDF

MEASUREMENT OF NUCLEAR FUEL ROD DEFORMATION USING AN IMAGE PROCESSING TECHNIQUE

  • Cho, Jai-Wan;Choi, Young-Soo;Jeong, Kyung-Min;Shin, Jung-Cheol
    • Nuclear Engineering and Technology
    • /
    • v.43 no.2
    • /
    • pp.133-140
    • /
    • 2011
  • In this paper, a deformation measurement technology for nuclear fuel rods is proposed. The deformation measurement system includes a high-definition CMOS image sensor, a lens, a semiconductor laser line beam marker, and optical and mechanical accessories. The basic idea of the proposed deformation measurement system is to illuminate the outer surface of a fuel rod with a collimated laser line beam at an angle of 45 degrees or higher. For this method, it is assumed that a nuclear fuel rod and the optical axis of the image sensor for observing the rod are vertically composed. The relative motion of the fuel rod in the horizontal direction causes the illuminated laser line beam to move vertically along the surface of the fuel rod. The resulting change of the laser line beam position on the surface of the fuel rod is imaged as a parabolic beam in the high-definition CMOS image sensor. An ellipse model is then extracted from the parabolic beam pattern. The center coordinates of the ellipse model are taken as the feature of the deformed fuel rod. The vertical offset of the feature point of the nuclear fuel rod is derived based on the displacement of the offset in the horizontal direction. Based on the experimental results for a nuclear fuel rod sample with a formation of surface crud, an inspection resolution of 50 ${\mu}m$ is achieved using the proposed method. In terms of the degree of precision, this inspection resolution is an improvement of more than 300% from a 150 ${\mu}m$ resolution, which is the conventional measurement criteria required for the deformation of neutron irradiated fuel rods.

A Study on the Weight Reduction of X,Y stage of Semiconductor Inspection Equipment using Sensitivity Analysis (민감도 분석을 이용한 반도체 검사 장비의 X, Y 스테이지 구조의 경량화 연구)

  • Koh, Man Soo;Kwon, Soon Ki;Kim, Cham Nae
    • Journal of Digital Convergence
    • /
    • v.17 no.7
    • /
    • pp.125-130
    • /
    • 2019
  • Sensitivity analysis is used to determine the effect of a change in a design parameter on the total system, and the calculated sensitivity is an important indicator of the improvement of a structure. In this study, we investigated the method of deriving and analyzing the sensitivity of design parameters by using finite element analysis and the method of improving a structure by using sensitivity analysis results. Design parameters for weight reduction design were selected using actual semiconductor inspection equipment that requires structural improvement, and the sensitivity to design parameters was calculated by using and finite difference method. We propose an improvement method that can reduce the weight while maintaining the transient response required by the equipment. By using the results of the sensitivity analysis through finite element analysis and finite difference method, we can create a structurally improved design that satisfies the desired stress or displacement by improving the design of the structure. Therefore, sensitivity analysis is applicable to various fields as well as semiconductor inspection equipment.