• Title/Summary/Keyword: Displacement efficiency

Search Result 555, Processing Time 0.028 seconds

Strain demand prediction method for buried X80 steel pipelines crossing oblique-reverse faults

  • Liu, Xiaoben;Zhang, Hong;Gu, Xiaoting;Chen, Yanfei;Xia, Mengying;Wu, Kai
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.321-332
    • /
    • 2017
  • The reverse fault is a dangerous geological hazard faced by buried steel pipelines. Permanent ground deformation along the fault trace will induce large compressive strain leading to buckling failure of the pipe. A hybrid pipe-shell element based numerical model programed by INP code supported by ABAQUS solver was proposed in this study to explore the strain performance of buried X80 steel pipeline under reverse fault displacement. Accuracy of the numerical model was validated by previous full scale experimental results. Based on this model, parametric analysis was conducted to study the effects of four main kinds of parameters, e.g., pipe parameters, fault parameters, load parameter and soil property parameters, on the strain demand. Based on 2340 peak strain results of various combinations of design parameters, a semi-empirical model for strain demand prediction of X80 pipeline at reverse fault crossings was proposed. In general, reverse faults encountered by pipelines are involved in 3D oblique reverse faults, which can be considered as a combination of reverse fault and strike-slip fault. So a compressive strain demand estimation procedure for X80 pipeline crossing oblique-reverse faults was proposed by combining the presented semi-empirical model and the previous one for compression strike-slip fault (Liu 2016). Accuracy and efficiency of this proposed method was validated by fifteen design cases faced by the Second West to East Gas pipeline. The proposed method can be directly applied to the strain based design of X80 steel pipeline crossing oblique-reverse faults, with much higher efficiency than common numerical models.

The Structural Economical Efficiency Evaluation of Partially Restrained Composite CFT Column-to-Beam Connection (합성반강접 CFT기둥-보 접합부 구조의 경제성 평가)

  • Kim, Sun-Hee;Bang, Jung-Seok;Park, Young-Wook;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.109-117
    • /
    • 2012
  • This study seeks to devise a design application for a beam structure with partially restrained composite connection to a CFT column. A cost-efficient and stable component is applied by adjusting the stiffness ratio of the column connection through partially restrained composite connection. Based on a review of the structure's stability, it was confirmed that in the case of a low-rise building as a moment frame, resistance without bracing is feasible because stiffness increased by virtue of the partial restrained composite connection by composite action. In the case of a high-rise building, lateral resistance load of moment frame was approximately 10% when proper partial restrained rate was at around 60%. With considerations related to economic efficiency, the partial restriction effect of the beam component was significantly activated by the uniform load, but that of the beam activated by concentrated load was not significantly indicative. The analysis indicated that 60% partial restrained girder at the connection was the most economical in the case of uniform load. It also showed that end moments can be reduced by approximately 25%.

Analysis of Performance Characteristics of Swash-Plate-Type Hydraulic Piston Motor (사판식 유압 피스톤모터의 성능특성 분석)

  • Lee, Yong-Bum;Kim, Kwang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1441-1446
    • /
    • 2012
  • An axial-piston-type hydraulic motor involves friction and leakage losses at the sliding parts, contact loss at the mechanism assembly parts, volumetric loss caused by the pressure drop, housing oil churning loss and compressibility from the hydraulic oil pipe resistance, etc. the friction and volumetric loss at the hydrostatic bearing between the piston shoe and the swash plate rotating at high speed and having an oil film gap of 8-15 ${\mu}m$ strongly affects the total efficiency of the hydraulic motor. In this study, a variable swash-plate-type hydraulic piston motor operating under a maximum pressure of 35 MPa, maximum speed of 2,500 rpm, and displacement of 320 cc/rev is tested to verify the optimal ratio of the hydrostatic bearing which is closely related to the hydraulic motor performance.

A Study on the Integrated Control and Safety Management System for a LNG Storage Tank (LNG 저장탱크의 통합제어 안전관리 시스템에 관한 연구)

  • Kim Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.1 s.26
    • /
    • pp.44-50
    • /
    • 2005
  • This paper presents integrated control and safety management system for a LNG storage tank. This system is for collecting and analyzing the temperature, pressure, and vibration signals in which are used to control and guarantee the system safety and leakage control from the inner gas tank. Based on the investigations of LNG tank related failures and accidents, we strongly recommend the modification and new development of current safety related measuring and control systems because the LNG tank is constructed bigger and bigger in recent years for the efficiency and safety increments. Thus, this paper presents newly developed integrated control and safety management system for a large LNG storage tank. This system provides the enhanced measuring and control systems, and new displacement based safety system, which may detect and control the deformation properties of tank structures. In addition, we recommend that the new integrated control and safety management system should be coupled by process integrated innovation system (PIIS) for an increased safety, efficiency, and productivity of LNG tanks.

  • PDF

Design of Dual Reflector for Monopulse antennas System (모노펄스안테나 시스템에 적용되는 2중 반사경 설계)

  • Kim, Won-Sub
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.1
    • /
    • pp.85-90
    • /
    • 2008
  • In this paper, we studied on dual reflector adjusted to monopulse antenna system. As a result, when the efficiency of main reflector is more than 70%, The size of reflector is 30 wavelength of maximum frequency and minimum frequency gain is 37.9dBi, and Maximum frequency gain is 38.6dBi. Also, when a radius is D and Focus-distance is $F_e$, a scheme for efficiency improvement of Sub Reflector is to increase the Focus-distance to Diameter Ratio. In this case, Cross polarization in Far field improved and spherical spreading loss in circumference of reflector reduced. The influence of Radiation pattern followed by the side displacement of feed antenna(at $x_sy_s$) is decreased, it is confirmed that performance of scanning is improved.

A Study on the Influence of Nonlinearity Coefficients in Air-Bearing Spindle Parametric Vibration

  • Chernopyatov, Y.A.;Lee, C.M.;Chung, W.J.;Dolotov, K.S.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.51-58
    • /
    • 2005
  • The development of the high-efficiency machine-tools equipment and new cutting tool materials with high hardness, heat- and wear-resistance has opened the way to application of high-speed cutting process. The basic argument of using of high-speed cutting processes is the reduction of time and the respective increase of machining productivity. In this sense, the spindle units may be regarded as one of the most important units, directly affecting many parameters of high-speed machining efficiency. One of the possible types of spindle units for high-speed cutting is the air-bearing type. In this paper, we propose the mathematical model of the dynamic behavior of the air-bearing spindle. To provide the high-level of speed capacity and spindle rotation accuracy we need the adequate model of "spindle-bearings" system. This model should consider characteristics of the interactions between system components and environment. To find the working characteristics of spindle unit we should derive the equations of spindle axis movement under the affecting factors, and solve these equations together with equations which describe the behavior of lubricant layer in bearing (bearing stiffness equations). In this paper, the three influence coefficients are introduced, which describe the center of spindle mass displacement, angle of shaft rotation around the axes under the unit force application and that under the unit torque application. These coefficients are operated in the system of differential equations, which describes the spindle axis spatial movement. This system is solved by Runge-Kutta method. Obtained trajectories and amplitude-frequency characteristics were then compared to experimental ones. The analysis shows good agreement between theoretical and experimental results, which confirms that the proposed model of air-bearing spindle is correctis correct

The Robust Augmented Reality System in The Rapid change of Brightness Using The Histogram Specification and Kalman Filter (히스토그램 명세화와 칼만 필터를 이용한 급격한 밝기 변화에 강건한 증강현실 시스템)

  • Kim, Kee-Baek;Lee, Seok-Han;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.1-10
    • /
    • 2011
  • In this paper, we propose the algorithm for the AR(Augmented Reality) system, which is robust to the brightness change of light. In the proposed method, the histogram specification is achieved using the sample histogram, obtained from the frames in which the target objects could be detected successful. And When the object key-points couldn't be detected by the displacement of camera positions, the positions of non-detected key-points ware estimated using the linear KF(Kalman Filter). When the proposed algorithm is applied in the AR systems, the object key-points can be detected three times as much as the existing others. In addition, to prove the more efficiency of the proposed algorithm, we implemented the AR game, and could know that the performance is the more advanced than the others. The proposed algorithm can be used for the AR environments, which high efficiency is required such as the AR game, or the implementation of AR systems which are robust to the change of lights, etc.

Performance of Beam-Slab connection of Waffle Shape Precast Prestressed Concrete Slab System (와플(Waffle) 형상을 가지는 PC슬래브의 보-슬래브 접합 성능)

  • Heo, Seok-Jae;Kim, Hyun-Jin;Ryu, Han-Gook;Choi, Kyoung-Kyu;Cho, Seung-Ho;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.21-24
    • /
    • 2008
  • This research verifies efficiency of Beam-Slab connection with Precast Prestressed Concrete Slab System of WAffle Shape(WAS) which solves problems of double-T system(DTS). Specimen is produced in Precast Concrete factories and is made in a way that WAS is layed across inverted T beam(ITB) and then it is filled with packing. After casting topping concrete into the specimen, curing is carried out. Variable are width of shear key and packing. The analysis is carried out in comparison between displacement and strength of Beam-Slab connection of specimen. The variable is not a effect in joint efficiency. Consequently, it may plans at the minimum with of shear key that packing is easy, will not affect strength.

  • PDF

The Study of Propeller Design and Aerodynamics Characteristics for FAR25 Grade Turboprop Aircraft (FAR25급 터보프롭 항공기 프로펠러 설계 및 공력특성 연구)

  • Choi, Won;Jeong, In-Myon;Kim, Ji-Hong;Lee, Il-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.648-651
    • /
    • 2010
  • Propeller shall have high efficiency and improved aerodynamic characteristics to get the thrust to fly at high speed for the FAR25 turboprop aircraft. That is way Clark-Y airfoil which is used to conventional turboprop aircraft propeller is selected as a blade airfoil. Javaprop program based on the Adkins method is used for aerodynamic design and analysis of propeller, Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. Slipstream displacement don't change and consider a rigid body. High efficiency propeller geometry is generated by varying chord length and pitch angle at design point of FAR25 turboprop aircraft. The propeller design results indicate that could be applied to the FAR25 turboprop aircraft, through analysis of propeller aerodynamic characteristics using the CFD(Computational Fluid Dynamic).

  • PDF

Hybrid Control of Aircraft Landing Gear using Magnetorheological Damper (MR댐퍼를 적용한 항공기 착륙장치의 하이브리드 제어기법 연구)

  • Tak, Jun Mo;Viet, Luong Quoc;Hwang, Jai-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • In this study, a hybrid control method that adjusts for the existing force control technique has been presented for consideration. The proposed hybrid control technique does away with the chattering phenomenon occurring in existing force control technique and provides high shock absorption efficiency. In order to design the controller for the landing gear with MR damper, the equation of motion of the landing gear was derived. The hybrid controller was designed after constructing a simulation model using Recur-Dyne, multi-body dynamic analysis software. The hybrid controller can reduce the maximum strut force and displacement based on the skyhook controller, and is able to get the high efficiency by making it work for the additional force control technique. In addition, an effective switching control technique and input shaping technique was applied to prevent the chattering in the drop simulation. Finally, the performance of the landing characteristics was evaluated throughout the various drop simulations.