• Title/Summary/Keyword: Displacement curve

Search Result 647, Processing Time 0.027 seconds

Lumbar Spinal Instability and Its Radiologic Findings (요추부 불안정증의 방사선학적 소견)

  • Yang, Kyoung Hoon;Kim, Nam Kyu;Kim, Young Soo;Ko, Yong;Oh, Seong Hoon;Oh, Suck Jun;Kim, Kwang Myung
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.1
    • /
    • pp.78-86
    • /
    • 2000
  • Objective : Lumbar spinal instability occurs when normal biomechanics support in lumbar vertebrae interrupted. Despite the recent enthusiastic studies, the precise radiological assessment has not been fully established, yet. Therefore, we carefully studied our cases to analyze the radiologic findings in lumbar spinal instability. Patients and Methods : We have put together radiological analysis and assessment based on 38 patients who have been diagnosed and treated for lumbar spinal instabilities from June 1994 to December 1998, Patients who have been diagnosed and treated for trauma were excluded from study. Results : The outcomes are as follows : 1) Lumbar lordotic curve was statistically significant in unstable group by 23.7, compared to the control group ($17.0^{\circ}$). 2) According to the resting x-ray, sagittal plane angulation measured on unstable group was $21.1^{\circ}$, control group $18.0^{\circ}$. Therefore unstable group was noticeably higher(p<0.01). 3) According to the resting x-ray sagittal plane displacement, unstable group had 4.3mm, the comparison had 1.2mm. Therefore measurement from the unstable group were significantly higher(p<0.01). 4) According to stress view, sagittal plane translation was 4.1mm for the unstables and 2.7mm for the comparisons. Therefore unstables were noticeably higher(p<0.01). 5) According to stress view, sagittal plane rotation was $15.1^{\circ}$ at L3-4, $22.0^{\circ}$ at L4-5, $27.9^{\circ}$ at L5S1 for the unstable group and $11.3^{\circ}$, $18.1^{\circ}$, $21.0^{\circ}$ each for the comparison. 6) Facet angle for unstable group, left $29.3^{\circ}-61.5^{\circ}$, right $24.4^{\circ}-63.2^{\circ}$ and the mean for each are $43.1^{\circ}$, $47.2^{\circ}$. The difference between left and right facet angle was $3.5^{\circ}-20.7^{\circ}$ and the mean value $15.3^{\circ}$. Facet angle for the comparisons for the left was $29.3^{\circ}-59.5^{\circ}$, right was in between $25.7^{\circ}-64.5^{\circ}$ range and the each mean are $44.9^{\circ}$ and $47.6^{\circ}$. Also, the difference between left and right facet angle was $4.1^{\circ}-9.3^{\circ}$ and the average was $17.1^{\circ}$. The average and the difference between the left and right angle are found not to have statistic necessity for both unstable and stable measurements(p>0.01). 7) 19 patients were found to have vacuum facet phenomenon among unstable group etc. results were collected. Conclusion : According to above results, we attempted to prepare the application to the patient of radiological analysis and assessment for lumbar spinal instability early checkup.

  • PDF

Behavioral Mechanism of Hybrid Model of ABG: Field Test (현장시험을 통한 ABG 하이브리드 공법의 거동 메커니즘 분석)

  • Seo, Hyung-Joon;Kim, Hyun-Rae;Jeong, Nam-Soo;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.523-534
    • /
    • 2010
  • A hybrid system of soil-nailing and compression anchor is proposed in this paper; the system is composed of an anchor bar (installed at the tip) with two PC strands and a steel bar. After drilling a hole, installing proposed hybrid systems, and filling the hole with grouting material, prestress is applied to the anchor bar to restrict the deformation at the head and/or to prevent shallow slope failures. However, since the elongation rate of PC strand is much larger than that of steel bar, yield at the steel bar will occur much earlier than the PC strand. It means that the yield load of the hybrid system will be overestimated if we simply add yield loads of the two - anchor bar and PC strands. It might be needed to try to match the yielding time of the two materials by applying the prestress to the anchor bar. It means that the main purpose of applying prestress to the anchor bar should be two-fold: to restrict the deformation at the nail head; and more importantly, to maximize the design load of the hybrid system by utilizing load transfer mechanism that transfers the prestress applied at the tip to the head through anchor bar. In order to study the load transfer mechanism in a systematic way, in-situ pullout tests were performed with the following conditions: soil-nailing only; hybrid system with the variation of prestress stresses from 0kN to 196kN. It was found that the prestress applied to the anchor system will induce the compressive stress to the steel bar; it will result in decrease in the slope of load-displacement curve of the steel bar. Then, the elongation at which the steel bar will reach yield stress might become similar to that of PC strands. By taking advantage of prestress to match elongations at yield, the pullout design load of the hybrid system can be increased up to twice that of the soil-nailing system.

  • PDF

A Case Study of Post-Grouted Drilled Shaft in Weathered Rock (풍화암소켓 대구경 현장타설말뚝의 선단보강그라우팅 사례)

  • Kwon, Oh-Sung;Jung, Sung-Min;Choi, Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.6
    • /
    • pp.5-16
    • /
    • 2011
  • Post-grouting for the drilled shaft is known to remarkably increase the end bearing capacity of pile by consolidating and reinforcing the disturbed ground containing slime around the pile tip. However, the general design guideline for post-grouting has not been established yet in Korea. Especially in the domestic application, the post-grouting is employed just for repairing the pile with unacceptable resistance rather than for increasing the design resistance of pile. Therefore, little is reported about the effect of post-grouting on the pile resistance itself. In this study, the effect of post-grouting on the resistance of drilled shafts installed in the weathered rock in Korea was estimated by performing the bi-directional load tests on the piles with and without the post-grouting. The test results presented that the initial slope of end bearing-base displacement curve in the pile with post-grouting was 4 times higher than that without post-grouting. At the acceptable settlement (1% of pile diameter), the end bearing capacities of piles with and without the post-grouting were estimated to be 12.0 MPa and 7.0 MPa, respectively, which indicate that the post-grouting could increase the end bearing resistance of pile in weathered rock more than 70%.

Experimental and Analytical Evaluation of the Seismic performance of a Concrete Box Structure Strengthened with Pre-flexed Members (프리플렉스 부재를 이용한 콘크리트 박스 구조물 내진보강에 관한 실험 및 해석적 평가)

  • Ann, Ho-June;Song, Sang-Geun;Min, Dae-Hong;An, Sang-Mi;Kong, Jung-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.397-403
    • /
    • 2016
  • During the rapid economic growth in Korea since the 1970s, many underground facilities were constructed such as under passes and railways. Seismic design has been mandated in 1988, but the structures built before 1988 were not reflected on the seismic design. Accordingly, these underground structures require effective seismic reinforcing methods to ensure safety when the earthquake happens. By these reasons, in this study, using the proposed pre-flexed members, RC box structure was analyzed for seismic reinforcement of the corner. This method is based on a principle that enlarging the resistance against the external force by installing the pre-flexed member to the box structure corner. To evaluate validity, a newly developed member with CornerSafe was compared with traditional type reinforcement using experiments and finite element analysis. In finite element mode, nonlinearity of steel was modeled based on J2 plasticity model and concrete was based on CEB FIP MODEL CODE 1990. Also, composite ratios of box and pre-flexed member were computed for design application. The reinforcement and box structure were analyzed under the bond condition completely attached by the tie, and the results of experiment and finite element analysis were same in the force-displacement curve.

Fracture Toughness Evaluation and Influence Parameter Analysis by Numerical Simulation of Brazilian Test (Brazilian시험의 수치해석 시뮬레이션을 통한 파괴인성 산정 및 영향변수 분석)

  • Synn, Joong-Ho;Park, Chan;Shin, Hee-Soon;Chung, Yong-Bok;Lee, Hi-Keun
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.67-75
    • /
    • 2000
  • The numerical simulation of Brazilian fracture toughness test is carried out using PFC code and the influence parameters are analyzed such as shape of loading plane, size of Brazilian disc and unit panicle of model, loading angle and loading rate. The flattened Brazilian disc is adopted for applying uniform load. The range of loading angle(2$\alpha$) necessary to induce the tensile crack at disc center and to obtain the load-displacement curve giving the critical load for the stable crack propagation is shown as 20$^{\circ}$~40$^{\circ}$. In condition that the loading angle is 20$^{\circ}$, the mode-I fracture toughness is evaluated almost constant in the range of particle size less than I mm and loading rate less than 0.01 mm/s. This range of influence parameters seems appropriate condition for the tensile crack initiation at disc center and the control of stable crack propagation, which can give the reliance in evaluation of fracture toughness by Brazilian test.

  • PDF

Fracture Toughness Evaluation and Influence Parameter Analysis by Numerical Simulation of Brazilian Test (Brazilian 시험의 수치해석 시뮬레이션을 통한 파괴인성 산정 및 영향변수 분석)

  • Synn, Joong-Ho;Park, Chan;Shin, Hee-Soon;Chung, Yong-Bok;Lee, Hi-Keun
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.320-328
    • /
    • 2000
  • The numerical simulation of Brazilian fracture toughness test is carried out using PFC code and the influence parameters are analyzed such as shape of loading plane, size of Brazilian disc and unit particle of model, loading angle and loading rate. The flattened Brazilian disc is adopted for applying uniform load. The range of loading angle(2$\alpha$) necessary to induce the tensile crack at disc center and to obtain the load-displacement curve giving the critical load for the stable crack propagation is shown as 20°∼40°. In condition that the loading angle is 20°, the mode-I fracture toughness is evaluated almost constant in the range of particle size less than 1 mm and loading rate less than 0.01㎜/s. This range of influence parameters seems appropriate condition for the tensile crack initiation at disc center and the control of stable crack propagation, which can give the reliance in evaluation of fracture toughness by Brazilian test.

  • PDF

Surgical indication analysis according to bony defect size in pediatric orbital wall fractures

  • Kim, Seung Hyun;Choi, Jun Ho;Hwang, Jae Ha;Kim, Kwang Seog;Lee, Sam Yong
    • Archives of Craniofacial Surgery
    • /
    • v.21 no.5
    • /
    • pp.276-282
    • /
    • 2020
  • Background: Orbital fractures are the most common pediatric facial fractures. Treatment is conservative due to the anatomical differences that make children more resilient to severe displacement or orbital volume change than adults. Although rarely, extensive fractures may result in enophthalmos, causing cosmetic problems. We aimed to establish criteria for extensive fractures that may result in enophthalmos. Methods: We retrospectively reviewed the charts of patients aged 0-15 years diagnosed with orbital fractures in our hospital from January 2010 to February 2019. Computed tomography images were used to classify the fractures into linear, trapdoor, and open-door types, and to estimate the defect size. Data on enophthalmos severity (Hertel exophthalmometry results) and fracture pattern and size at the time of injury were obtained from patients who did not undergo surgery during the follow-up and were used to identify the surgical indications for pediatric orbital fractures. Results: A total of 305 pediatric patients with pure orbital fractures were included-257 males (84.3%), 48 females (15.7%); mean age, 12.01±2.99 years. The defect size (p=0.002) and fracture type (p=0.017) were identified as the variables affecting the enophthalmometric difference between the eyes of non-operated patients. In the linear regression analysis, the variable affecting the fracture size was open-door type fracture (p<0.001). Pearson's correlation analysis demonstrated a positive correlation between the enophthalmometric difference and the bony defect size (p=0.003). Using receiver operating characteristic curve analysis, a cutoff value of 1.81 ㎠ was obtained (sensitivity, 0.543; specificity, 0.724; p=0.002). Conclusion: The incidence of enophthalmos in pediatric pure orbital fractures was found to increase with fracture size, with an even higher incidence when open-door type fracture was a cofactor. In clinical settings, pediatric orbital fractures larger than 1.81 ㎠ may be considered as extensive fractures that can result in enophthalmos and consequent cosmetic problems.

A Study on the Ubiquitous Wireless Tilt Sensors's Application for Measuring Vertical Deflection of Bridge (교량의 수직처짐 측정을 위한 유비쿼터스 무선경사센서 활용연구)

  • Jo, Byung Wan;Yoon, Kwang Won;Kim, Young Ji;Lee, Dong Yoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.116-124
    • /
    • 2011
  • In this study, a new method to estimate the bridge deflection is developed by using Wireless Tilt Sensor. Most of evaluations of structural integrity, it is very important to measure the geometric profile, which is a major factor representing the global behavior of civil structure, especially bridges. In the past, Because of the lack of appropriate methods to measure the deflection curve of bridges on site, the measurement of deflection had been done restrictly within just a few discrete points along the bridge. Also the measurement point could be limited to locations installed with displacement transducers. So, in this study, the deflection of the structure was measured by wireless tilt sensor instead of LVDT(Linear Variable Differential Transformer). Angle change of tilt sensor shows structural behavior by the change of the resistor values which is presented to voltage. Moreover, the maximum deflection was calculated by changing the deflection angle which was calculated as V(measured voltage) ${\times}$F(factor) to deflection. The experimental tests were carried out to verify the developed deflection estimation techniques. Because the base of tilt measuring is the gravity, uniform measurement is possible independent of a measuring point. Also, measuring values were showed very high accuracy.

Flexural Behavior of Large-Diameter Composite PHC pile Using In-Filled Concrete and Reinforcement (속채움 콘크리트와 철근으로 보강된 대구경 합성 PHC말뚝의 휨성능 평가)

  • Bang, Jin-Wook;Park, Chan-Kyu;Yang, Seong-Yeong;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.109-115
    • /
    • 2016
  • A demand of high bearing capacity of piles to resist heavy static loads has been increased. For this reason, the utilization of large diameter PHC piles including a range from 700 mm to 1,200 mm have been increased and applied to the construction sites in Korea recently. In this study, in order to increase the flexural strength capacity of the PHC pile, the large diameter composite PHC pile reinforced by in-filled concrete and reinforcement was developed and manufactured. All the specimens were tested under four-point bending setup and displacement control. From the strain behavior of transverse bar, it was found that the presence of transverse bar was effective against crack propagation and controlling crack width as well as prevented the web shear cracks. The flexural strength and mid-span deflection of LICPT specimens were increased by a maximum of 1.08 times and 1.19 times compared to the LICP specimens. This results indicated that the installed transverse bar is in an advantageous ductility performance of the PHC piles. A conventional layered sectional analysis for the pile specimens was performed to investigate the flexural strength according to the each used material. The calculated bending moment of conventional PHC pile and composite PHC pile, which was determined by P-M interaction curve, showed a safety factor 1.13 and 1.16 compared to the test results.

Effect of Pull-out Property by Shape and Mechanical Property of Reinforcing Fiber on the Flexural Behavior of Concrete (보강섬유의 형상과 물성에 따른 인발특성이 콘크리트의 휨거동에 미치는 영향)

  • Kim, Hong-Seop;Nam, Jeong-Soo;Kim, Jung-Hyun;Han, Sang-Hyu;Kim, Gyu-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.41-50
    • /
    • 2014
  • This study evaluated the bonding property of fiber and flexural behavior of fiber reinforced concrete. Amorphous steel fiber, hooked steel fiber and polyamide fiber was used for evaluation of bonding property and flexural behavior. As a result, the hooked steel fiber was pulled out from matrix when peak stress. However amorphous steel fiber occurred shear failure because bonding strength between fiber and matrix was higher than tensile strength of fiber. Polyamide fibers occurred significantly displacement to peak stress because of elongation of fiber. After that peak stress, fiber was cut off. Amorphous steel fiber reinforced concrete had a greater maximum flexural load compared with hooked steel fiber reinforced concrete because bonding performance between fiber and matrix was high and mixed population of fiber was many. However flexural stress was rapidly reduced in load-deflection curve because of shear failure of fiber. Flexural stress of hooked steel fiber reinforced concrete was slowly reduced because fiber was pulled out from the matrix. In the case of polyamide fiber reinforced concrete, flexural stress was rapidly lowered because of elongation of fiber. However flexural stress was increased again because of bonding property between polyamide fiber and matrix. The pull-out properties of the fiber and matrix has effect on the deformation capacity and flexural strength of fiber reinforced concrete.