• Title/Summary/Keyword: Displacement Properties

Search Result 1,253, Processing Time 0.026 seconds

Comparison of displacement capacity of reinforced concrete columns with seismic codes

  • Cansiz, Sinan;Aydemir, Cem;Arslan, Guray
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.295-304
    • /
    • 2019
  • The lateral displacement or drift may be the cause of the damage in the reinforced concrete (RC) columns under the seismic load. In many regulations, lateral displacement was limited according to the properties of columns. The design displacement limits may be represented indirectly through the material strain limits and the mechanical properties of columns. EUROCODE-8 and FEMA356 calculate displacement limits by taking into account the mechanical properties of columns. However, Turkey Building Earthquake Code (TBEC) determine displacement limits by taking into account the material strain limits. The aim of this study is to assess the seismic design codes for RC columns through an experimental study. The estimates of seismic design codes have been compared with the experimental results. It is observed that the lateral displacement capacities of columns estimated according to some seismic codes are not in agreement with the experimental results. Also, it is observed that TBEC is conservative in the context of the performance indicator of RC columns, compared to EUROCODE-8 and FEMA356. Moreover, in this study, plastic hinge length and effective stiffness of test elements were investigated.

Mechanical Properties of Different Anatomical Sites of the Bone-Tendon Origin of Lateral Epicondyle

  • Han, Jung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.1013-1021
    • /
    • 2001
  • A series of rabbit common extensor tendon specimens of the humeral epicondyle were subjected to tensile tests under two displacement rates (100mm/min and 10mm/min) and different elbow flexion positions 45°, 90°and 135°. Biomechanical properties of ultimate tensile strength, failure strain, energy absorption and stiffness of the bone-tendon specimen were determined. Statistically significant differences were found in ultimate tensile strength, failure strain, energy absorption and stiffness of bone-tendon specimens as a consequence of different elbow flexion angles and displacement rates. The results indicated that the bone-tendon specimens at the 45°elbow flexion had the lowest ultimate tensile strength; this flexion angle also had the highest failure strain and the lowest stiffness compared to other elbow flexion positions. In comparing the data from two displacement rates, bone-tendon specimens had lower ultimate tensile strength at all flexion angles when tested at the 10mm/min displacement rate. These results indicate that creep damage occurred during the slow displacement rate. The major failure mode of bone-tendon specimens during tensile testing changed from 100% of midsubstance failure at the 90°and 135°elbow flexion to 40% of bone-tendon origin failure at 45°. We conclude that failure mechanics of the bone-tendon unit of the lateral epicondyle are substantially affected by loading direction and displacement rate.

  • PDF

Evaluation of Effective In-Plane Elastic Properties by Imposing Periodic Displacement Boundary Conditions (주기적 변형 경계조건을 적용한 면내 유효 탄성 물성치의 계산)

  • 정일섭
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1950-1957
    • /
    • 2004
  • Analysis for structures composed of materials containing regularly spaced in-homogeneities is usually executed by using averaged material properties. In order to evaluate the effective properties, a unit cell is defined and loaded somehow, and its response is investigated. The imposed loading, however, should accord to the status of unit cells immersed in the macroscopic structure to secure the accuracy of the properties. In this study, mathematical description for the periodicity of the displacement field is derived and its direct implementation into FE models of unit cell is attempted. Conventional finite element code needs no modification, and only the boundary of unit cell should be constrained in a way that the periodicity is preserved. The proposed method is applicable to skew arrayed in-homogeneity problems. Homogenized in-plane elastic properties are evaluated for a few representative cases and the accuracy is examined.

A Study of Surface Properties and Handle of Nonwovens for disposable diaper (기저귀용 부직포의 표면특성과 태에 관한 연구)

  • 오경화;권영하;홍경화;강태진
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.3_4
    • /
    • pp.491-498
    • /
    • 2004
  • Among the components of disposable diaper, the top sheet contacting with baby skin directly is usually made of nonwoven fabrics. Therefore, the tactile properties of the nonwoven fabrics are important for the skin health of infants. In this study, we have explored the surface properties of hygiene nonwoven fabrics (100% cotton spunlace, 100% tencel spunlace, 100% polypropylene (PP) thermalbonding and 100% PP Thru-air bonded carded web (TABCW)), such as friction coefficient and geometrical roughness. used by KES-F system and a laser displacement sensor. Also, we evaluated the subjective responses about the hygiene nonwoven fabrics used by a questionnaire and compared with the objective values, measured by KES-F system and a laser displacement sensor respectively. From the result, we have found that surface sensation (such as soft, smooth, and rough) and bulkiness sensation (such as spongy and fluffy) of nonwovens were represented excellently by L-SMD values which are measured by a laser displacement sensor.

Estimation of Dynamic Displacement and Characteristics of A Simple Beam from FBG Sensor Signals (FBG센서 응답을 이용한 단순보의 동적 변위 및 동특성 추정)

  • Choi, Eun Soo;Kang, Dong Hoon;Chung, Won Seok;Kim, Hak Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.503-514
    • /
    • 2006
  • FBG sensors are capable of measuring the strain of structures easily and more durably than electric resistance gauges. Thus, many researches are dedicated to the application for the response monitoring or non-destructive evaluation of structures using FBG sensors. Additionally, the measured strains at the top and bottom of a cross-section can be transformed into the curvature of the section, which can be used to calculate its vertical displacement. Hence, this study aims to measure the dynamic strain signals of a steel section simply supported beam and to estimate the dynamic displacement from the strain signals, after which the estimated displacement is com pared with the measured displacement. The dynamic characteristics (natural frequency, damping ratio and mode shape) of the beam are predicted from both the estimated and measured displacement signals, and from the strain time history of the FBG sensors. The predicted properties are compared with those of an analytical model of the beam. The estimated displacement. However, the predicted dynamic properties from both the estimated displacements and the measured strains are well-correlated with those from the measured displacement. It is therefore appreciated that the estimation of the dynamic properties of FBG sensor signals is reasonable. Especially, the strain signal of the FBG sensor was amplified at a higher-frequency region in comparison with the displacement estimation with higher-mode properties.

Effect of Test Parameter on Ball Shear Properties for BGA and Flip Chip Packages (BGA 및 Flip Chip 패키지의 볼전단 특성에 미치는 시험변수의 영향)

  • Gu, Ja-Myeong;Jeong, Seung-Bu
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.19-21
    • /
    • 2005
  • The ball shea. tests for ball grid array (BGA) and flip chip packages were carried out with different displacement rates to find out the optimum condition of the displacement rate for this test. The BGA packages consisted of two different kinds of solder balls (eutectic Sn-37wt.%Pb and Sn-3.5wt.%Ag) and electroplated Au/Ni/Cu substrate, whereas the flip chip package consisted of electroplated Sn-37Pb solder and Cu UBM. The packages were reflowed up to 10 times, or aged at 443 K up to 21 days. The variation of the displacement rate resulted in the variations of the shear properties such as shear force, displacement rate at break, fracture mode and strain rate sensitivity. The increase in the displacement rate led to the increase of the shear force and brittleness of solder joints.

  • PDF

Displacement Properties of a Multilayer Piezoelectric Actuator with number of Layer (적층형 압전 액츄에이터의 적층 변화에 따른 변위 특성)

  • Choi, Young-Jun;Kang, Hyung-Won;Lee, Hyeong-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.298-298
    • /
    • 2007
  • In this study, displacement values according to variation of laminated layer in piezoelectric body were measured. Samples were $40{\times}12[mm^2]$ and number of printed layer were varied from 3, 5, 7, 9, up to 11. Effect of printed layer variation on displacement properties of multilayer piezoelectric actuator was investigated. Also displacement values were estimated using Atila simulation tool. Difference in measured values and simulation results were compared.

  • PDF

Determination of the Mechanical Properties of the Coated Layer in the Sheet Metal Using Load-Displacement Curve by Nanoindentation Technique (나노 인덴테이션의 하중-변위 곡선을 이용한 용융아연도금 강판 코팅층의 기계적 특성 결정)

  • Ko Y. H;Lee J. M;Kim B. M
    • Transactions of Materials Processing
    • /
    • v.13 no.8
    • /
    • pp.731-737
    • /
    • 2004
  • Mechanical properties such as Young's modulus and hardness of thin film in coated steel are difficult to determine by nano-indentation from the conventional analysis using the load-displacement curve. Therefore, an analysis of the nano-indentation loading-unloading curve was used to determine the Young's modulus, hardness. A new method is recently being developed for elastic-plastic properties of materials from nano-indentation. Elastic modulus of the thin films shows relatively small influence whereas yield strength is found to have significant effect on measured data. The load-displacement curves of material tested with a Berkovich indenter and nano-indentation continuous stiffness method is used to measure the modulus and hardness through thin films, and then these are computed using the analysis procedure. The developed neural networks apply also to obtain reliable mechanical properties.

Sensitivity Analysis on Rockfill Material Parameters Influencing Crest Displacement of Concrete-Faced Rockfill Dam (콘크리트 표면차수벽형 석괴댐 정상부 변위에 영향을 미치는 입력물성에 대한 민감도분석)

  • Ha, Ik-Soo;Seo, Min-Woo;Shin, Dong-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.846-853
    • /
    • 2006
  • In this study, quantitative sensitivity analysis on rockfill material influencing the dam crest displacement of Concrete-Faced Rockfill Dam(CFRD) was carried out. The purpose of this study is to indicate the most important input parameter and to show the quantitative variation of displacement at the crest of CFR type dam with this input parameter. The rockfill material properties for parametric study were obtained from the results of large scale triaxial tests on 34 rockfill materials in the 22 different sites. From the statistical analysis on these data, some statistical characteristics of rockfill material properties such as property range, distribution characteristics, and correlation between the properties were investigated. based on these characteristics, 27 property combinations were constituted by Latin Hypercube sampling method. Dam crest displacements after construction, impounding, and earthquake loading were evaluated by static and dynamic numerical analysis on each combination. From the sensitivity analysis, it was found that the crest displacement of CFR type dam was absolutely affected by the shear modulus of rockfill material and the effect of friction angle of it was negligible. This relative difference of sensitivity was more outstanding in case of crest settlement than in case of crest horizontal displacement. Also, it was found that the settlement and horizontal displacement of dam crest logarithmically decreased as the shear modulus increased and the difference between the maximum value and the minimum vale amounted to about 9.5 times in case of settlement and about 10 times in case of horizontal displacement.

  • PDF

The basic study about streaming potential generated by specimen fracture (시료 파괴 시 발생하는 SP에 관한 기초 연구)

  • Kim, Jong-Wook;Cho, Sung-Jun;Park, Sam-Gyu;Sung, Nark-Hoon;Song, Young-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.291-296
    • /
    • 2007
  • We measured potential waveform of load, displacement, micro electric signal generated by rock and mortar fracture using PXI A/D Converter. The rock type used for measurement was used granite, limestone and sandstone, and mortar specimen. we made measuring equipment of physical properties to confirm basic information of physical properties, measured physical properties of rock engineering, electric resistivity and seismic velocity. Potential waveform system was built using PXI A/D Converter and measured potential waveform of load, displacement, micro-electric signal generated using this during uniaxial compressive test by the specimen finished such test of physical properties. Using the saturated rock and mortar specimen, micro electric signal increased, and It didn't increase a signal in dried rock and mortar specimen according as load and strain rate increases. But signal also increased in saturated or dried specimen in case of sandstone. It was possible to check the close correlation relationship the signal and fracture behavior by a compressive load as the signal of fracture position was increased bigger than the other position. It was also possible to check the correlation relationship between physical properties and micro geo-electric signal.

  • PDF