• 제목/요약/키워드: Dispersion strengthened

검색결과 76건 처리시간 0.023초

보상 격차와 조직성과 간 관계에 있어 토너먼트 내 인력 유입과 유출이 미치는 효과 (The Effects of the Tournament Inflow and Outflow on the Relationship between Pay Dispersion and Organizational Performance)

  • 박지성
    • 한국산학기술학회논문지
    • /
    • 제18권11호
    • /
    • pp.409-415
    • /
    • 2017
  • 본 논문은 보상 격차가 노동 생산성에 미치는 영향을 토너먼트 신규 인력 유입과 토너먼트 내 잔류자의 방출 효과를 중심으로 살펴본다. 보상 격차의 긍정적 효과를 설명하는 주요 이론인 토너먼트 이론에 따르면, 조직 내 보상 격차 확대는 외부의 우수 인력을 유인하고 내부의 저성과자들을 자연스럽게 퇴출함으로써 조직성과 향상에 기여하게 된다. 이러한 주장에도 불구하고 그간 토너먼트 이론을 중심으로 한 보상 격차 논의에서는 토너먼트의 참가자 측면이 간과되어 왔는데, 이에 본 연구에서는 토너먼트에 새롭게 유입되는 외부 인력 채용과 기존 토너먼트에서 잔류하는 인력에 대한 방출이 보상 격차와 노동생산성 간 관계에 어떠한 영향을 주는지를 살펴보았다. 이에 본 논문에서는 보상 격차 자체는 노동생산성에 정(+)의 효과를 가질 것으로 예측하였으며, 신규 인력 유입은 보상 격차와 노동생산성 간 정(+)의 관계를 약화시키는 반면, 잔류자의 방출 효과는 이러한 정(+)의 관계를 강화시킬 것으로 가설화하였다. 132개 기업 데이터를 통해 실증 분석한 결과, 보상 격차는 노동생산성 증가에 기여하였으며, 외부 신규 인력 유입은 보상 격차와 노동생산성 간 정(+)의 관계를 약화시키는 것으로 나타났다. 반면, 잔류자의 방출의 경우 예측과는 달리 오히려 보상 격차와 노동생산성 간 정(+)의 관계를 약화시키는 결과를 보였다. 이러한 이론적 논의와 실증 결과는 보상 격차 도입에 있어 토너먼트 내에서 우수 신규 인력의 유입과 잔류자의 방출이라는 조건이 갖추어져야 함을 보여준다.

The Thermal Stability and Elevated Temperature Mechanical Properties of Spray-Deposited $SiC_P$/Al-11.7Fe-1.3V-1.7Si Composite

  • Hao, L.;He, Y.Q.;Wang, Na;Chen, Z.H.;Chen, Z.G.;Yan, H.G.;Xu, Z.K.
    • Advanced Composite Materials
    • /
    • 제18권4호
    • /
    • pp.351-364
    • /
    • 2009
  • The thermal stability and elevated temperature mechanical properties of $SiC_P$/Al-11.7Fe-1.3V-1.7Si (Al-11.7Fe-1.3V-1.7Si reinforced with SiC particulates) composites sheets prepared by spray deposition (SD) $\rightarrow$ hot pressing $\rightarrow$ rolling process were investigated. The experimental results showed that the composite possessed high ${\sigma}_b$ (elevated temperature tensile strength), for instance, ${\sigma}_b$ was 315.8 MPa, which was tested at $315^{\circ}C$, meanwhile the figure was 232.6 MPa tested at $400^{\circ}C$, and the elongations were 2.5% and 1.4%, respectively. Furthermore, the composite sheets exhibited excellent thermal stability: the hardness showed no significant decline after annealing at $550^{\circ}C$ for 200 h or at $600^{\circ}C$ for 10 h. The good elevated temperature mechanical properties and excellent thermal stability should mainly be attributed to the formation of spherical ${\alpha}-Al_{12}(Fe,\;V)_3Si$ dispersed phase particulates in the aluminum matrix. Furthermore, the addition of SiC particles into the alloy is another important factor, which the following properties are responsible for. The resultant Si of the reaction between Al matrix and SiC particles diffused into Al matrix can stabilize ${\alpha}-Al_{12}(Fe,\;V)_3Si$ dispersed phase; in addition, the interface (Si layer) improved the wettability of Al/$SiC_P$, hence, elevated the bonding between them. Furthermore, the fine $Al_4C_3$ phase also strengthened the matrix as a dispersion-strengthened phase. Meanwhile, load is transferred from Al matrix to SiC particles, which increased the cooling rate of the melt droplets and improved the solution strengthening and dispersion strengthening.

An Investigation of the Stability of Y2O3 and Sintering Behavior of Fe-Based ODS Particles Prepared by High Energy Ball Milling

  • Park, Eun-Kwang;Hong, Sung-Mo;Park, Jin-Ju;Lee, Min-Ku;Rhee, Chang-Kyu;Seol, Kyeong-Won
    • 한국분말재료학회지
    • /
    • 제20권4호
    • /
    • pp.275-279
    • /
    • 2013
  • Fe-based oxide dispersion strengthened (ODS) powders were produced by high energy ball milling, followed by spark plasma sintering (SPS) for consolidation. The mixed powders of 84Fe-14Cr-$2Y_2O_3$ (wt%) were mechanically milled for 10 and 90 mins, and then consolidated at different temperatures ($900{\sim}1100^{\circ}C$). Mechanically-Alloyed (MAed) particles were examined by means of cross-sectional images using scanning electron microscopy (SEM). Both mechanical alloying and sintering behavior was investigated by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HR-TEM). To confirm the thermal behavior of $Y_2O_3$, a replica method was applied after the SPS process. From the SEM observation, MAed powders milled for 10 min showed a lamella structure consisting of rich regions of Fe and Cr, while both regions were fully alloyed after 90 min. The results of sintering behavior clearly indicate that as the SPS temperature increased, micro-sized defects decreased and the density of consolidated ODS alloys increased. TEM images revealed that precipitates smaller than 50 nm consisted of $YCrO_3$.

Production of Dispersion-strengthened Cu-TiB2 Alloys by Ball-milling and Spark-plasma Sintering

  • Kwon, Dae-Hwan;Kum, Jong-Won;Nguyen, Thuy Dang;Dudinad, Dina;Choi, Pyuck-Pa;Kim, Ji-Soon;Kwon, Young-Soon
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1205-1206
    • /
    • 2006
  • Dispersion-strengthened copper with $TiB_2$ was produced by ball-milling and spark plasma sintering (SPS).Ball-milling was performed at a rotation speed of 300rpm for 30 and 60min in Ar atmosphere by using a planetary ball mill (AGO-2). Spark-plasma sintering was carried out at $650^{\circ}C$ for 5min under vacuum after mechanical alloying. The hardness of the specimens sintered using powder ball milled for 60min at 300rpm increased from 16.0 to 61.8 HRB than that of specimen using powder mixed with a turbular mixer, while the electrical conductivity varied from 93.40% to 83.34%IACS. In the case of milled powder, hardness increased as milling time increased, while the electrical conductivity decreased. On the other hand, hardness decreased with increasing sintering temperature, but the electrical conductiviey increased slightly

  • PDF

MICROSTRUCTURAL EVOLUTION OF A HIGH CR FE-BASED ODS ALLOY BY DIFFERENT COOLING RATES

  • Shen, Yin-Zhong;Cho, Hae-Dong;Jang, Jin-Sung
    • Nuclear Engineering and Technology
    • /
    • 제40권2호
    • /
    • pp.99-106
    • /
    • 2008
  • Through mechanical alloying, hot isostatic pressing and hot rolling, a 9%Cr Fe-based oxide dispersion-strengthened alloy sample was fabricated. The tensile strength of the alloy is significantly improved when the microstructure is modified during the post-consolidation process. The alloy samples were strengthened as the cooling rates increased, though the elongation was somewhat reduced. With a cooling rate of $800^{\circ}C/s$ after normalization at $1150^{\circ}C$, the alloy sample showed a tensile strength of 1450 MPa, which is about twice that of the hot rolled sample; however, at $600^{\circ}C$ the tensile strength dramatically decreased to 620 MPa. Optical microscope and transmission electron microscope were used to investigate the microstructural changes of the specimens. The resultant strengthening of the alloy sample could be mainly attributed to the interstitially dissolved nitrogen, the fraction of the tempered martensite, the fine grain and the presence of a smaller precipitate. The decrease in the tensile strength was mainly caused by the precipitation of vanadium-rich nitride.

Development of a micro-scale Y-Zr-O oxide-dispersion-strengthened steel fabricated via vacuum induction melting and electro-slag remelting

  • Qiu, Guoxing;Zhan, Dongping;Li, Changsheng;Qi, Min;Jiang, Zhouhua;Zhang, Huishu
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1589-1595
    • /
    • 2019
  • In this paper, the CLAM steel strengthened by micro-scale Y-Zr-O was prepared by vacuum induction melting followed by electroslag remelting (VIM-ESR). Yttrium (Y) and zirconium (Zr) were easy to aggregates into massive yttrium-zirconium-rich inclusions in the steel melted by vacuum induction melting (VIM), which would interrupt the continuity of the matrix and reduce the mechanical properties of steel. Micron-sized Y-Zr-O inclusions would be produced with the removal of original blocky Y-Zr-rich inclusions and the submicron-sized inclusions smaller than $0.2{\mu}m$ could be retained in the steel. The small grain size and the better refinement and distribution uniformity of Y-Zr-O inclusions after remelting would be responsible for the better yield strength and toughness. For VIM-ESR alloy, the ultimate tensile strength is 749 MPa and the yield strength is 642 MPa at room temperature, meanwhile they are 391 MPa and 367 MPa at $600^{\circ}C$, respectively. Meanwhile, the ductile-brittle transition temperature (DBTT) reduced from $-43^{\circ}C$ (VIM) to $-76^{\circ}C$ (VIM-ESR).

기계적 합금화 공정으로 제조된 Fe-14Cr Ferritic 산화물 분산 강화(ODS) 합금 강의 고온 산화 거동 (High Temperature Oxidation Behavior of Fe-14Cr Ferritic Oxide Dispersion Strengthened Steels Manufactured by Mechanical Alloying Process)

  • 김영균;박종관;김휘준;공만식;이기안
    • 한국분말재료학회지
    • /
    • 제24권2호
    • /
    • pp.133-140
    • /
    • 2017
  • This study investigates the oxidation properties of Fe-14Cr ferritic oxide-dispersion-strengthened (ODS) steel at various high temperatures (900, 1000, and $1100^{\circ}C$ for 24 h). The initial microstructure shows that no clear structural change occurs even under high-temperature heat treatment, and the average measured grain size is 0.4 and $1.1{\mu}m$ for the as-fabricated and heat-treated specimens, respectively. Y-Ti-O nanoclusters 10-50 nm in size are observed. High-temperature oxidation results show that the weight increases by 0.27 and $0.29mg/cm^2$ for the as-fabricated and heat-treated ($900^{\circ}C$) specimens, and by 0.47 and $0.50mg/cm^2$ for the as-fabricated and heat-treated ($1000^{\circ}C$) specimens, respectively. Further, after 24 h oxidation tests, the weight increases by 56.50 and $100.60mg/cm^2$ for the as-fabricated and heat-treated ($1100^{\circ}C$) specimens, respectively; the latter increase is approximately 100 times higher than that at $1000^{\circ}C$. Observation of the surface after the oxidation test shows that $Cr_2O_3$ is the main oxide on a specimen tested at $1000^{\circ}C$, whereas $Fe_2O_3$ and $Fe_3O_4$ phases also form on a specimen tested at $1100^{\circ}C$, where the weight increases rapidly. The high-temperature oxidation behavior of Fe-14Cr ODS steel is confirmed to be dominated by changes in the $Cr_2O_3$ layer and generation of Fe-based oxides through evaporation.

산화물 분산강화형 316L 스테인리스강의 제조와 특성 연구 (Fabrication and Characterization of ODS 316L Stainless Steels)

  • 김민호;류호진;김성수;한창희;장진성;권오종
    • 한국분말재료학회지
    • /
    • 제16권2호
    • /
    • pp.122-130
    • /
    • 2009
  • Austenitic oxide-dispersion-strengthened (ODS) stainless steel was fabricated using a wet mixing process without a mechanical milling in order to reduce contaminations of impurities during their fabrication process. Solution of yttrium nitrate was dried after a wet mixing with 316L stainless steel powder. Carbon and oxygen contents were effectively reduced by this wet processing. Microstructural analysis showed that coarse yttrium silicates of about 150 nm were formed in austenitic ODS steels with a silicon content of about 0.8 wt%. Wet-processed austenitic ODS steel without silicon showed higher yield strength by the presence of finer oxide of about 20 nm.