• Title/Summary/Keyword: Dispersion analysis

Search Result 1,433, Processing Time 0.034 seconds

Theoretical Modeling of Surface Wave Propagation for SASW Testing Method (수중 주파수영역표면파괴기법의 역해석 과정에서 적용되는 파동해석기법)

  • Lee, Byung-Sik
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.4
    • /
    • pp.251-260
    • /
    • 2000
  • Applicabilities of two numerical methods, the 2-dimensional and the 3-dimensional method, are evaluated to inverse test results obtained from the underwater SASW(Spectral -Analysis-of-Surface-Waves) method. As a result of this study, it has been found that the 2-dimensional method can supposed to be applicable for the cases where stiffness of soil layer increases gradually with depth, and the stiffness is relatively low. For the other cases, however, it has been concluded that the 3-dimensional method needs to be applied to determine realistic theoretical dispersion curves. An example is also shown that in situ soil profile underwater is estimated from experimental dispersion curves using the 3-dimensional method. As a results, it can be concluded that the underwater SASW method can be effectively applied to explore the underwater soil condition.

  • PDF

Analysis of Variation for Drainage Structure with Flow Direction Methods on the Basis of DEM (DEM을 기반으로 한 흐름방향 모의기법에 따른 배수구조의 변동성 해석)

  • Park, Hye-Sook;Kim, Joo-Cheol
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.391-398
    • /
    • 2018
  • The main purpose of this study is to suggest and recommend the more reliable flow direction methods within the framework of DEM and power law distribution, by investigating the existing methodologies. To this end SFD (single flow direction method), MFD (multiple flow direction method) and IFD (Infinite flow direction method) are applied to analyze the determination of a flow direction for the water particles as seen in the Jeonjeokbigyo basin, and then assessed with respect to the variation of flow accumulation in that region. As the main results revealed, the study showed the different patterns of flow accumulation are found out from each applications of flow direction methods utilized in this study. This brings us to understand that as the flow dispersion on DEM increases, in this case the contributing areas to the outlet grow in sequence of SFD, IFD, MFD, but it is noted that the contribution of individual pixels into outlet decreases at that time. In what follows, especially with the MFD and IFD, the result tends to make additional hydrologic abstraction from rainfall excess, as noted due to the flow dispersion within flow paths on DEM. Based on the parameter estimation for a power law distribution, which is frequently used for identify the aggregation structure of complex system, by maximum likelihood flow accumulation can be thought of as a scale invariance factor. In this regard, the combination of flow direction methods could give rise to the more realistic water flow on DEM, as revealed through the separate flow direction methods as utilized for dispersion and aggregation effects of water flow within the available different topographies.

Study on the talc dispersion and rheological properties of PP/talc compound (PP/talc 컴파운드의 talc 분산성 및 유변학적 특성 연구)

  • You, Young-Chul;Kim, Youn-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4261-4266
    • /
    • 2011
  • Polypropylene (PP)/talc compounds with talc content of 20wt% were fabricated by master-batch (MB) and direct compounding method using injection molding. The MB was prepared by mini compounder at $200^{\circ}C$ and the content of talc was 50wt%. The talc dispersion of the PP/talc compound was investigated by SEM-EDS. The talc was well dispersed within PP matrix in case of the MB-PP compound using MB. The rheological properties of the PP/talc compounds were measured by dynamic Rheometer. The MB-PP compound indicates higher shear thinning and elastic property than direct compound. The disperion of talc was certified by G'-G" plot, and Van Gurp-Palmen analysis was applied in order to certify an increase in elasticity.

Interaction of Ion Cyclotron Electromagnetic Wave with Energetic Particles in the Existence of Alternating Electric Field Using Ring Distribution

  • Shukla, Kumari Neeta;Kumari, Jyoti;Pandey, Rama Shankar
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.67-77
    • /
    • 2022
  • The elements that impact the dynamics and collaborations of waves and particles in the magnetosphere of planets have been considered here. Saturn's internal magnetosphere is determined by substantiated instabilities and discovered to be an exceptional zone of wave activity. Interchanged instability is found to be one of the responsible events in view of temperature anisotropy and energization processes of magnetospheric species. The generated active ions alongside electrons that constitute the populations of highly magnetized planets like Saturn's ring electron current are taken into consideration in the current framework. The previous and similar method of characteristics and the perturbed distribution function have been used to derive dispersion relation. In incorporating this investigation, the characteristics of electromagnetic ion cyclotron wave (EMIC) waves are determined by the composition of ions in plasmas through which the waves propagate. The effect of ring distribution illustrates non-monotonous description on growth rate (GR) depending upon plasma parameters picked out. Observations made by Cassini found appropriate for modern study, have been applied to the Kronian magnetosphere. Using Maxwellian ring distribution function of ions and detailed mathematical formulation, an expression for dispersion relation as well as GR and real frequency (RF) are evaluated. Analysis of plasma parameters shows that, proliferating EMIC waves are not developed much when propagation is parallelly aligned with magnetosphere as compared to waves propagating in oblique direction. GR for the oblique case, is influenced by temperature anisotropy as well as by alternating current (AC) frequency, whereas it is much affected only by AC frequency for parallel propagating waves.

Experimental, Theoretical and Numerical Studies for Concentrations and Velocities of Gas Jets (가스 제트 누출의 농도 및 속도에 대한 실험, 이론 및 수치해석 연구)

  • Bang, Boo-Hyoung;Kim, Hong-Min;Kim, Sung-Hoon;Lee, Keun-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.1
    • /
    • pp.20-26
    • /
    • 2022
  • The results of experimental, theoretical, and numerical analysis were compared regarding the concentrations and velocities of flammable gas jets generated by pressurized leakage of methane gas. The concentration was measured through experiments for the jet dispersion process, and the velocities was calculated by applying the self-similarity theory. And the velocities and concentrations were calculated using CFD tools - FLACS and CFX- compared with the results. The difference between self-similarity model and CFD is due to the buoyancy term, which increases as the distance from a leak source increases. The results are compared with dimensionless parameters using the leak source radius and velocity components along the leak axis.

Measurement and Analysis of Indoor Environment in Emergency Switching Type Temporary Negative Pressure Isolation Ward that Use Portable Negative Pressure Units (이동형 음압기를 적용한 긴급 전환형 임시음압격리병실의 실내 환경 측정 분석)

  • Lee, Wonseok;Lee, Sejin;Kim, Heegang;Yeo, Myoungsouk
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.28 no.4
    • /
    • pp.89-97
    • /
    • 2022
  • Purpose: Because of the recent COVID-19 pandemic, there have been many cases of using portable negative pressure unit to convert general wards into temporary negative pressure isolation wards. The purpose of this study is to analyze the indoor environment of the switching type wards. Methods: Field measurements and experiments were conducted in a medical facility. Air volume, wind speed and pressure difference were measured in non-occupant state. Dispersion tests were performed with gas and particle matter. Results: The pressure difference between the wards and the corridor was higher than -2.5 Pa in normal situation. However, in the gas and particle dispersion tests, it was found that there were concerns about the spread through leakages in low-airtight walls or ceilings. In addition, it was confirmed that the pressure imbalance in ducts through the non-sealed diffusers could cause back flow during portable unit operation. Furthermore, when there was a pressure difference between adjacent wards planned to be at same pressure level, the possibility of the spread through the leakages was found. Implications: When using portable units for making switching type wards, it is necessary to create airtight space and seal the non-operation diffusers. In case of operating the air handling unit, T.A.B must be performed to adjust the duct balancing.

경부고속철도 건설에 따른 중심성측정식에 의한 국토동남권 공간구조 변화 ( On the Change in Spatial Structures of Southeast Region by Centrographic Measures in Accordance with Development of High-Speed Rail ( HSR ) )

  • Choi, Y.W.;Kim, S.D.
    • Journal of Korean Port Research
    • /
    • v.11 no.2
    • /
    • pp.305-320
    • /
    • 1997
  • The objective of this paper is to analysis & forecast on the change in spatial structures of southeast region by development of the Seoul-Pusan high-speed Rail. To measure the spatial structures, it was used the method of mean center and standard distance among of centrographic measures as analytical tools. The changes of spatial structures patten over time and space in the southeast region were surveyed using population and employment data of 57 zones. And also, to forecast the spatial structures of the southeast region after opening of the Seoul-Pusan high-speed rail, it was supposed three(3) scenarios which designed using influential area with centering around of the proposed high-speed rail stations. Therefore, the results of this research indicate as follows; 1) The spatial structures of population is showed a trend of continual concentration toward Ulsan city area, and also the spatial structures of employment is showed a trend of continual dispersion over time. 2) The forecast of three93) scenarios supposed after opening of the Seoul-Pusan high-speed rail in 2006 show a change of the spatial structures with both population concentration and employment dispersion. In the meantime, the rapid increase of population and wide dispersion of employment is reform with centering around HSR stations which builted in the southeast region after opening of high-speed rail. 3) It shall furnish valuable data to establish the development strategy of urban and local region, and also forecast the change of spatial structures about population and employment in influential area which passed on high-speed rail line & stations by method of mean center and standard distance among of centrographic measures as analytical tools.

  • PDF

The Formation of Compact Elliptical Galaxies: Nature or Nurture?

  • Kim, Suk;Jeong, Hyunjin;Rey, Soo-Chang;Lee, Youngdae;Joo, Seok-Joo;Kim, Hak-Sub
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.77.3-77.3
    • /
    • 2019
  • We present an analysis of the stellar population of compact elliptical galaxies (cEs) in various environments. Following conventional selection criteria of cEs, we created a list of cE candidates in the redshift range of z < 0.05 using SDSS DR12 catalog. We finally selected cEs with low-luminosity (Mg > 18.7 mag), small effective radius (Re < 600 pc), and high velocity dispersion (> 60 kms-1). We divide our cE sample into those inside and outside of the one virial radius of the bright (Mr < -21 mag) nearby host galaxy which is then defined as cEs with (cEw) and without (cEw/o) host galaxy, respectively. We investigated the stellar population properties of cEs based on the Hb, Mgb, Fe 5270, and Fe 5335 line strengths from the OSSY catalog. We found that cEw has a systematically higher metallicity than cEw/o. In the velocity dispersion-Mgb distribution, while cEw/o follows the relation of early-type galaxies, cEw are found to have a systematically higher metallicity than cEw/o at a given velocity dispersion. The different feature in the metallicity between cEw and cEw/o can suggest that two different scenarios can be provided in the formation of cEs. cEw would be the remnant cores of the massive progenitor galaxies that their outer parts have been tidally stripped by massive neighbor galaxies (i.e., nurture origin). On the other hand, cEw/o are likely to be faint-end of early-type galaxies maintaining in-situ evolution (i.e., nurture origin).

  • PDF

Quantification of Nerve Viscosity Using Shear Wave Dispersion Imaging in Diabetic Rats: A Novel Technique for Evaluating Diabetic Neuropathy

  • Feifei Liu;Diancheng Li;Yuwei Xin;Fang Liu;Wenxue Li;Jiaan Zhu
    • Korean Journal of Radiology
    • /
    • v.23 no.2
    • /
    • pp.237-245
    • /
    • 2022
  • Objective: Viscoelasticity is an essential feature of nerves, although little is known about their viscous properties. The discovery of shear wave dispersion (SWD) imaging has presented a new approach for the non-invasive evaluation of tissue viscosity. The present study investigated the feasibility of using SWD imaging to evaluate diabetic neuropathy using the sciatic nerve in a diabetic rat model. Materials and Methods: This study included 11 diabetic rats in the diabetic group and 12 healthy rats in the control group. Bilateral sciatic nerves were evaluated 3 months after treatment with streptozotocin. We measured the nerve cross-sectional area (CSA), nerve stiffness using shear wave elastography (SWE), and nerve viscosity using SWD imaging. The motor nerve conduction velocity (MNCV) was also measured. These four indicators and the histology of the sciatic nerves were then compared between the two groups. The performance of CSA, SWE, and SWD imaging in distinguishing the two groups was assessed using receiver operating characteristic (ROC) analysis. Results: Nerve CSA, stiffness, and viscosity in the diabetic group was significantly higher than those in the control group (all p < 0.05). The results also revealed a significantly lower MNCV in the diabetic group (p = 0.005). Additionally, the density of myelinated fibers was significantly lower in the diabetic group (p = 0.004). The average thickness of the myelin sheath was also lower in the diabetic group (p = 0.012). The area under the ROC curve for distinguishing the diabetic neuropathy group from the control group was 0.876 for SWD imaging, which was significantly greater than 0.677 for CSA (p = 0.030) and 0.705 for SWE (p = 0.035). Conclusion: Sciatic nerve viscosity measured using SWD imaging was significantly higher in diabetic rats. The viscosity measured using SWD imaging performed well in distinguishing the diabetic neuropathy group from the control group. Therefore, SWD imaging may be a promising method for the evaluation of diabetic neuropathy.

A Study on Developing Reliable Standard Samples of Crystalline Silica (결정형 산화규소의 표준시료 확보방안에 대한 연구)

  • Eun-song Hwang;Eun-Ji Lee;Hae Dong Park
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.34 no.3
    • /
    • pp.247-253
    • /
    • 2024
  • Objectives: The purpose of this study is to establish a method for the production of standard samples of crystalline silica and to assess its feasibility for the future application in non-mandatory quality control. Methods: We dispersed crystalline silica in 2-propanol to prepare a 1 mg/mL dispersion solution. Between 50-200 uL of the dispersion solution was taken with a pipette, injected onto PVC filters, air-dried, and used as samples. The variation and homogeneity of the quartz concentrations were confirmed by FTIR analysis. Analytical proficiency testing was conducted across 30 voluntary participants. Results: The coefficient of variation was lower for samples prepared using supernatant (settled for 16 hours) compared to those made with dispersion solution. The contamination level after using the pipette tip one to five times was 8.13-9.89% of the solution's concentration. Homogeneity was confirmed within the concentration of 0.0223-0.0431 mg/mL, but it was not at the higher concentration of 0.0553 mg/mL. In the analytical proficiency testing, the coefficient of variation for each level ranged from 24.6% to 28.3%, with a compliance rate of 90.0% to 96.7%. Conclusions: This study was conducted to produce standard samples of crystalline silica. The homogeneity of the samples was confirmed at low concentrations. However, further investigations on the applicability of wider range of concentrations are needed.