• Title/Summary/Keyword: Dispersion analysis

Search Result 1,421, Processing Time 0.031 seconds

Application of Thermal Discharge Dispersion Model on Cheonsu Bay (천수만 해역에서 온배수 확산모델의 적용)

  • 박영기
    • Journal of Environmental Science International
    • /
    • v.4 no.2
    • /
    • pp.169-180
    • /
    • 1995
  • This Daper presents effective simulation of the dispersion of thermal discharge which can be relesed at Boryong power plant. Applied numerical models are finite difference method for hydrodynamic analysis and Masch-model comprised of conditions for ambient current velocity. Application of these models is done in Cheonsu Bay Summing up the results of this study are as follows; 1. It is found that the result for measurements of temperature appears high at southwardly Songdo on flood. The reason is that tidal currents which flowed north direction were accompanied with southwardly dispersed thermal discharge. A minute Particle of thermal Plume has a tendency to dispels inward Deacheon Bay. 2. According to the results of numerical experiment, maximum distance for thermal discharge dispersion appeared 10.8 km at lower part and 8.6 km at upper part with power plant outlet as starting point. 3. Comparative the numerical simulation and Airbone Multispectral Scanner indicated that thermal discharge should be verified separative phenomena. The simulated results were compared with field data set showing good agreement. It is concluded that these model can be simulated well.

  • PDF

Evaluation of Elastic Properties of Anisotropic Cylindrical Tubes Using an Ultrasonic Resonance Scattering Spectroscopy

  • Kim, Jin-Yeon;Li, Zheng
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.548-557
    • /
    • 2010
  • An ultrasonic resonance scattering spectroscopy technique is developed and applied for reconstructing elastic constants of a transversely isotropic cylindrical component. Immersion ultrasonic measurements are performed on tube samples made from a boron/aluminum composite material to obtain resonance frequencies and dispersion curves of different guided wave modes propagating in the tube. Theoretical analysis on the acoustic resonance scattering from a transversely isotropic cylindrical tube is also performed, from which complete backscattering and resonance scattering spectra and theoretical dispersion curves are calculated. A sensitive change of the dispersion curves to the elastic properties of the composite tube is observed for both normal and oblique incidences; this is exploited for a systematic evaluation of damage and elastic constants of the composite tube samples. The elastic constants of two boron/aluminum composite tube samples manufactured under different conditions are reconstructed through an optimization procedure in which the residual between the experimental and theoretical phase velocities (dispersion curves) is minimized.

Evaluation of Ground Response Dispersion Caused by the Difference of Input Ground Motions (입력지진파 차이로 인한 지반응답 분산도 평가 연구)

  • Kim, Jin-Man;Ryu, Jeong-Ho;Kweon, Gi-Chul;Sim, Jae-Ho;Kim, Jae-Kyoung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.293-304
    • /
    • 2007
  • In 2007, Round Robin Test (RRT) on ground response analyses has been conducted by the technical committee of Soil Dynamics and Geotechnical Earthquake Engineering of Korean Geotechnical Society. Total 14 teams have reported 16 different results. This paper discusses the evaluation of ground response dispersion caused by the difference of input ground motions. In order to determine the characteristics of ground response, this study analysed the peak ground acceleration, predominant period, and response spectrum of reported ground surface motions. The results suggest that ground response dispersion due to the difference of input ground motions can be significant.

  • PDF

Determination of Liquid Rocket Engine System Test Range Considering Performance Dispersions (성능 분산을 고려한 액체로켓엔진의 시스템 시험 영역 설정)

  • Nam, Chang-Ho;Kim, Seung-Han;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.165-169
    • /
    • 2007
  • Qualification test range for Lox/Kerosene gas generator cyle liquid rocket engine was determined by considering engine dispersion and flight inlet conditions. With various pump characteristics, the operation range of components and system was investigated through dispersion analysis. The variation of engine performance shows opposite trends in calibration and dispersion.

  • PDF

A Numerical Analysis on Elastodynamic Dispersion Phenomena of Composite Pipes

  • Cho, Youn-Ho;Lee, Chong-Myong;Rose Joseph L.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.222-227
    • /
    • 2005
  • An efficient technique fur the calculation of guided wave dispersion curves in composite pipes is presented. The technique uses a forward-calculating variational calculus approach rather than the guess and iterate process required when using the more traditional partial wave superposition technique. The formulation of each method is outlined and compared. The forward-calculating formulation is used to develop finite element software for dispersion curve calculation. Finally, the technique is used to calculate dispersion curves for several structures, including an isotropic bar, two multi-layer composite bars, and a composite pipe.

Lagrangian Investigation of Turbulent Channel Flow (II) - Analysis of Lagrangian Statistics - (난류채널유동의 라그란지안 해석 (II) - 라그란지안 통계분석 -)

  • Choi, Ho-Jong;Lee, Sang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.867-876
    • /
    • 2003
  • The Lagrangian dispersion of fluid particles in inhomogeneous turbulence is investigated by a direct numerical simulation of turbulent channel flow. Four points Hermite interpolation in the homogeneous direction and Chebyshev polynomials in the inhomogeneous direction is adopted to simulate the fluid particle dispersion. An inhomogeneity of Lagrangian statistics in turbulent boundary layer is investigated by releasing many particles at several different wall-normal locations and tracking those particles. The fluid particle dispersions and Lagrangian structure functions of velocity are scaled by the Kolmogorov similarity. The auto-correlations of velocity and acceleration are shown at the different releasing locations. Effect of initial particle location on the dispersion is analyzed by the probability density function at the several downstreams and time instants.

Analysis of the Pulse Distortion on Tapered Microstrip Lines (테이퍼형 마이크로스트립 선로에서 펄스의 왜곡 특성 분석)

  • Kim, Gi-Rae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.8
    • /
    • pp.45-51
    • /
    • 2000
  • The distortion of an electrical pulse, which has a rise/fall time due to the dispersion and the reflection, on tapered microstrip lines has investigated In time domain. The voltage and current transfer functions are shown for the tapered line. The dispersion distortion obtained by using these trans(or functions are represented for the nonideal square pulse along the triangular, Tchebycheff and exponential tapered lines, and analyzed the influence of the reflection and the frequency dispersion on the distorted voltage wave in the tapered lines. The observed overshoot in front of the distorted wane is caused due to the frequency dispersion and the sustained tail of that comes from the reflection in the tapered line.

  • PDF

Calculation of band structures and dispersion surfaces in two-dimensional photonic crystals using the FDTD method (FDTD 방법을 이용한 2차원 황자 크리스탈의 밴드 구조와 분산 곡선의 계산)

  • 홍수완;김창모;정교방
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.6
    • /
    • pp.479-484
    • /
    • 2001
  • The analysis of photonic band gaps and anomalous dispersion phenomena in photonic crystals requires understanding of band structures and dispersion surfaces. We show the results of the calculation of band structures and dispersion surfaces for a few two- dimensional lattices, using the finite-difference time-domain method with periodic boundary conditions. In addition, localized defect modes the exist within the band gap are computed by the same method.

  • PDF

Analytical wave dispersion modeling in advanced piezoelectric double-layered nanobeam systems

  • Ebrahimi, F.;Haghi, P.;Dabbagh, A.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.175-183
    • /
    • 2018
  • This research deals with the wave dispersion analysis of functionally graded double-layered nanobeam systems (FG-DNBSs) considering the piezoelectric effect based on nonlocal strain gradient theory. The nanobeam is modeled via Euler-Bernoulli beam theory. Material properties are considered to change gradually along the nanobeams' thickness on the basis of the rule of mixture. By implementing a Hamiltonian approach, the Euler-Lagrange equations of piezoelectric FG-DNBSs are obtained. Furthermore, applying an analytical solution, the dispersion relations of smart FG-DNBSs are derived by solving an eigenvalue problem. The effects of various parameters such as nonlocality, length scale parameter, interlayer stiffness, applied electric voltage, relative motions and gradient index on the wave dispersion characteristics of nanoscale beam have been investigated. Also, validity of reported results is proven in the framework of a diagram showing the convergence of this model's curve with that of a previous published attempt.

Fume Particle Dispersion in Laser Micro-Hole Machining with Oblique Stagnation Flow Conditions (경사 정체점 유동이 적용된 미세 홀 레이저 가공 공정의 흄 오염입자 산포특성 연구)

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.77-82
    • /
    • 2021
  • This numerical study focuses on the analysis of fume particle dispersion characteristics over the surface of target workpiece in laser micro-hole machining process. The effects of oblique stagnation flow over fume generating machining point are examined by carrying out a series of three-dimensional random particle simulations along with probabilistic particle generation model and particle drag correlation of low Reynolds number. Present computational model of fume particle dispersion is found to be capable of assessing and quantifying the fume particle contamination in precision hole machining which may influenced by different types of air flow patterns and their flow intensity. The particle size dependence on dispersion distance of fume particles from laser machining point is significant and the effects of increasing flow oblique angle are shown quite differently when slot blowing or slot suction flows are applied in micro-hole machining.