• Title/Summary/Keyword: Dispersed Generator(DG)

Search Result 6, Processing Time 0.016 seconds

LAN-Based Protective Relaying for Interconnect Protection of Dispersed Generators (LAN을 이용한 분산전원 연계 계통의 보호)

  • Jyung, Tae-Young;Baek, Young-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.491-497
    • /
    • 2007
  • As dispersed generators was driven in condition interconnecting with utility, it could cause a variety of new effects to the original distribution system that was running as considered only the one-way power flow. Therefore, the protection devices that is builted in distribution system should be designed to be able to operate with disposing of not only a fault of the generator, but also utility condition. Especially, the fault of the feeder interconnected with Dispersed Generator can cause the islanding phenomenon of open DG(Dispersed Generators). This phenomenon has many problems such as a machinery damage, electricity qualify degradation and a difficulty of the system recovery. In the fault therefore, we must separate Dispersed Generator from the system quickly. In this paper, for the fault classification of the interconnected DG and the outside feeder we judge the fault of the interconnected DG and the outside feeder in HMI through data provided by IED(Intelligent Electronic Device) on the network and decide whether it operates or not by sending the result to each relay.

Reliability Improvement Considering Effect of Dispersed Generator and Interruption Cost in Distribution Systems (분산전원의 영향과 정전비용을 고려한 신뢰도 향상)

  • Kim, Kyu-Ho;Song, Kyung-Bin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.10
    • /
    • pp.172-177
    • /
    • 2006
  • This paper presents a method to improve reliability considering dispersed generator(DG) installation and interruption cost with load types. It is used to the different interruption costs with load pattern of daily peak load. The objective functions such as power losses cost operation cost of DG, power buy cost and interruption cost are minimized for reliability improvement and efficient operation. The several indices for reliability evaluation are improved by dispersed generator installation. The proposed method is applied to IEEE 13 bus test systems to demonstrate its effectiveness.

Application of Directional Over Current Protection Schemes Considering the Fault Characteristics in the Distribution System with Dispersed Generation (분산전원이 연계된 배전계통의 고장특성을 고려한 방향성 보호계전 방식 적용 연구)

  • Jung, Won-Wook;Lee, Hak-Ju;Kwon, Seong-Chul;Chae, Woo-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.97-107
    • /
    • 2010
  • Penetration of distributed generator(DG) to power distribution system can cause malfunction of existing protection schemes. Because grid interconnected DG can contribute fault currents and make bidirectional current flows on the system, fault contributions from DG can cause an interference of protection relay operation. Therefore, over current protection device of the distribution system with DGs need directional protection schemes. In this paper, improved directional protection algorithms are proposed for the distribution system with DG considering their fault characteristics. And than, these directional protection algorithms are tested and validated in various fault conditions. From the simulation results, it can be seen that the proposed directional protection algorithms are practically efficient for the radial distribution system with DG.

Visions and Technical Challenges of Hydrogen Economy: Power System Viewpoint

  • Won Dong-Jun;Liu Chen-Ching
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.339-343
    • /
    • 2005
  • Hydrogen, as a future energy source, is thought as an alternative of fossil fuel in view of environment and energy security. Hydrogen has the properties of both fuel and electricity so that it can make the energy paradigm shift in the future. Therefore, researches on hydrogen in power system area are essential and urgent due to their huge effects on current paradigm. In this paper, the visions and technical challenges of hydrogen in power system are reviewed as energy storage, dispersed generation (DG), DC generator, and combined heat and power (CHP).

Power System Concerns in Hydrogen Economy (수소경제하에서의 전력시스템)

  • Won, Dong-Jun;Liu, Chen-Ching;Moon, Seung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.486-488
    • /
    • 2005
  • Hydrogen, as a future energy source, can be a good alternative of fossil fuel in view of environment and energy security. Hydrogen can be both fuel and electricity so that it will greatly change energy paradigm. Therefore, researches on hydrogen in power system area are essential and urgent due to their huge effects. In this paper, the importances and meanings of hydrogen in power system are reviewed as energy storage, DC generator, dispersed generation (DG), and combined heat and power (CHP). Technical challenges in hydrogen economy are also listed.

  • PDF

Analysis on Momentary Voltage Dips with the Interconnection Operation of Utility-interactive Cogneration Systems Considering Their Generator Type (발전기 형태를 고려한 열병합발전시스템의 배전계통 연계운전시의 순시전압변동 해석)

  • 최준호;김재철
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.4
    • /
    • pp.23-30
    • /
    • 2000
  • Cogeneration systems are seen as a significant innovation for dispersed energy generation since they are both environmentally friendly and has comparatively high degrees of efficiency. It is especially suited for the decentralized provision of electricity and heat. However, it causes operational problems such as voltage regulation, voltage variation, protection and safety. Especially, it is expected that the interconnection/disconnection operation of cogeneration system has an effect on distribution voltage regulation and variation. Recently, with the increased use of customer-owned computers and other sensitive electronic equipment, electric power quality has become an important concerns. Therefore, the voltage quality problems with cogeneration system should be investigated because the voltage quality is an important part of electrical power quality. In this paper, the momentary voltage dips associated with the interconnection/disconnection operation of cogeneration system are analyzed, including restraint solutions at the customer level. In addition, the unit capacity of cogeneration systems per feeder are evaluated from the view point of momentary voltage variations. The results of this paper are useful analysis data for interconnection standards/guidelines of cogeneration systems and dispersed generation (DG)

  • PDF