• Title/Summary/Keyword: Dislocation Glide

Search Result 32, Processing Time 0.023 seconds

Nanoindentation on the Layered Ag/Cu for Investigating Slip of Misfit Dislocation (나노인덴테이션 해석을 통한 Ag/Cu층에서 발생하는 Misfit 전위의 slip 특성에 대한 연구)

  • Trandinh, Long;Ryu, Yong-Moon;Cheon, Seong-Sik
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.17-24
    • /
    • 2011
  • The EAM simulation of nanoindentation was performed to investigate misfit dislocation slip in the Ag/Cu. The film layer, whose thickness in the range of 2-5nm, was indented by a spherical indenter with the N$\'{o}$se-Hoover thermostat condition. The simulation shows that the indentation position relative to misfit dislocation (MFD) has the effect on the dislocation, glide up or cross slip, for Ag film layer thickness less than 4 nm. Elastic energy variation during MFDs slip was revealed to be a key factor for the softening of Ag/Cu. The critical film layer thickness was evaluated for each case of Ag/Cu according to the spline extrapolation technique.

Creep Properties of AZ31 Magnesium Alloy at Elevated Temperature (AZ31 마그네슘 합금의 고온 크리프 특성)

  • Chung, Chin-Sung;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.20-26
    • /
    • 2009
  • The creep deformation behavior of AZ31 magnesium alloy was examined in the temperature range from 573 to 673K (0.62 to 0.73 Tm) under various constant stresses covering low strain rate range from $4{\times}10^{-9}\;s^{-1}$ to $2{\times}10^{-2}\;s^{-1}$. At low stress level, the stress exponent for the steady-state creep rate was ~3 and the present results were in good agreement with the prediction of Takeuchi and Argon model. At high stress level, the stress exponent was ~5 and the present results were in good agreement with the prediction of Weertman model. The transition of deformation mechanism from solute drag creep to dislocation climb creep could be explained in terms of solute-atmospherebreakaway concept.

Microscopic Investigation of the Strain Rate Hardening for Polycrystalline Metals (철강재료 변형률속도 경화의 미시적 관찰)

  • Yoon, J.H.;Park, C.G.;Kang, J.S.;Suh, J.H.;Huh, M.Y.;Kang, H.G.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.17 no.1
    • /
    • pp.46-51
    • /
    • 2008
  • Polycrystalline materials such as steels(BCC) and aluminum alloys(FCC) show the strain hardening and the strain rate hardening during the plastic deformation. The strain hardening is induced by deformation resistance of dislocation glide on some crystallographic systems and increase of the dislocation density on grain boundaries or inner grain. However, the phenomenon of the strain rate hardening is not demonstrated distinctly in the rage of $10^{-2}$ to $10^2/sec$ strain rate. In this paper, tensile tests for various strain rates are performed in the rage of $10^{-2}$ to $10^2/sec$ then, specimens are extracted on the same strain position to investigate the microscopic behavior of deformed materials. The extracted specimens are investigated by using the electron backscattered diffraction(EBSD) and transmission electron microscopy(TEM) results which show the effect of texture orientation, grain size and dislocation behavior on the strain rate hardening.

Strain Rate Dependence of Plastic Deformation Properties of Nanostructured Materials (나노구조재료의 소성변형 성질의 변형률속도 의존성)

  • Yoon Seung Chae;Kim Hyoung Seop
    • Transactions of Materials Processing
    • /
    • v.14 no.1 s.73
    • /
    • pp.65-70
    • /
    • 2005
  • A phase mixture model was employed to simulate the deformation behaviour of metallic materials covering a wide grain size range from micrometer to nanometer scale. In this model a polycrystalline material is treated as a mixture of two phases: grain interior phase whose plastic deformation is governed by dislocation and diffusion mechanisms and grain boundary 'phase' whose plastic flow is controlled by a boundary diffusion mechanism. The main target of this study was the effect of grain size on stress and its strain rate sensitivity as well as on the strain hardening. Conventional Hall-Petch behaviour in coarse grained materials at high strain rates governed by the dislocation glide mechanism was shown to be replaced with inverse Hall-Petch behaviour in ultrafine grained materials at low strain rates, when both phases deform predominantly by diffusion controlled mechanisms. The model predictions are illustrated by examples from literature.

Characterization of Planar Defects in Annealed SiGe/Si Heterostructure

  • Lim, Young-Soo;Seo, Won-Seon
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.699-702
    • /
    • 2009
  • Due to the importance of the SiGe/Si heterostructure in the fields of thermoelectric and electronic applications, SiGe/Si heterostructures have been extensively investigated. For practical applications, thermal stability of the heterostructure during the thermoelectric power generation or fabrication process of electronic devices is of great concern. In this work, we focused on the effect of thermal annealing on the defect configuration in the SiGe/Si heterostructure. The formation mechanism of planar defects in an annealed SiGe/Si heterostructure was investigated by transmission electron microscopy. Due to the interdiffusion of Si and Ge, interface migration phenomena were observed in annealed heterostructures. Because of the strain gradient in the migrated region between the original interface and the migrated interface, the glide of misfit dislocation was observed in the region and planar defects were produced by the interaction of the gliding misfit dislocations. The planar defects were confined to the migrated region, and dislocation pileup by strain gradient was the origin of the confinement of the planar defect.

Mechanisms of Time-dependent Plastic Deformation of Eutectoid and Hypereutectoid Steels at Low T/Tm Temperatures (저 T/Tm 온도에서 공석강 및 과공석강의 시간의존성 소성변형 기구)

  • Choi, B.H.;Chung, K.C.;Park, K.T.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.359-365
    • /
    • 2016
  • The rate-controlling mechanisms for time-dependent plastic deformation of eutectoid and hyper-eutectoid pearlitic steels at low $T/T_m$ temperatures were explored. The strain rate - stress data obtained from a series of constant load tensile tests at $0.25{\sim}0.30T/T_m$ were applied to the power law, the lattice friction controlled plasticity, and the obstacle controlled plasticity. Of these models, the obstacle controlled plasticity was found to best-describe the rate-controlling mechanism for time-dependent plastic deformation of two steels at low $T/T_m$ temperatures in terms of the activation energy for overcoming the obstacles against dislocation glide in ferrite. The deformed microstructures revealed the dislocation forests of a high density as the main obstacles. In addition, the obstacle controlled plasticity well-explained the effects of cementite on the $0^{\circ}K$ flow stress of two steels.

A Sudy on the Ceep Mchanism of 316 Sainless Seel under Hgh Sresses (고응력 상태에 있는 316스테인레스강의 CREEP 성형 기구에 관한 연구)

  • Baek, Nam-Ju;Han, Kyu-Taek
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.2 no.1
    • /
    • pp.53-61
    • /
    • 1985
  • This study is concerned with creep mechanism of SUS 316 under high stresses. Creep tests were conducted at temperatures between $480^{\circ} and $820^{\circ}C and stresses between 7.6 and 24.6$kg/mm^2$. To investigate the mechanism of the steady-state creep under high stresses, work hardening coefficient and activation energy are obtained. The activation energy was calculated by means of the temperature differential test together with the method of correlating the creep rates against the inverse of the absolute temperature for different stresses and strains. From the experimental results and their analyzed facts, it is concluded that the steady-state creep behavior of SUS 316 under high stresses is controlled by dislocation glide mechanism.

  • PDF

Creep Properties of Grain Coarsened ODS MA NiAl (결정립 조대화된 기계적 합금화 ODS NiAl의 Creep 성질)

  • Eo, Sun-Cheol;Seo, Seong-Jae
    • Korean Journal of Materials Research
    • /
    • v.7 no.11
    • /
    • pp.942-950
    • /
    • 1997
  • NiAI기 산화물 분산강화(Oxide Dispersion Strengthende:ODS)합금을 기계적 합금화 (Mechanical Alloying: MA)방법으로 제조하였으며, 열간압축방법으로 성형하였다. 연이어 단순항온처리에 의한 정상결정립성장과 특성조건에서의 thermomechanical treatment 에 의한 이차재결정화를 유도하였다. 결정립 조대화된 ODSD MA NiAI의 creep 성질 및 이에 조대화된 미세조직은 creep 성질이 저하된 반면, 이차재결정화된 MA NiAI의 creep성질은 크게 향상되었다. 이 creep 성질의 향상은 이차재결정화의 특성인 급격한 결정립의 조대화, 분산상의 성장억제 및 grain aspect ratio의 증가에 기인한 것으로 사료되었다. 이차재결정화된 ODS MA NiAI의 creep또는 glide controlled dislocation creep임을 제시하지만, 전체 creep속도가 결정립 크기 및 grain aspect ratio의 영향을 크게 받은 것을 볼 때, 결정립계 미끄럼기구가 주 creep 기구와 조합되어 MA NiAI의 전체 creep기구에 영향을 준 것으로 추정할 수 있었다.

  • PDF

Deformation Mechanism Map of Nanocrystalline Metallic Materials (나노결정립 금속재료의 변형기구지도)

  • Yoon, S.C.;Bok, C.H.;Kwak, E.J.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.473-478
    • /
    • 2007
  • In this study, a deformation mechanism map of metallic nanocrystalline materials(NCMs) using the phase mixture model is proposed. It is based on recent modeling that appears to provide a conclusive description of the phenomenology and the mechanisms underlying the mechanical properties of NCMs. The proposed models adopted the concept of a 'phase mixture' in which the grain interior and the grain boundaries are treated as separate phases. The volume fraction of this grain boundary 'phase' may be quite appreciable in a NCM. Based on the theoretical model that provides an adequate description of the grain size dependence of plasticity covering all grain size range from coarse down to the nanoscale, the tensile deformation response of NCMs, especially focusing on the deformation mechanisms was investigated. The deformation mechanism map is newly proposed with axes of strain rate, grain size and temperature.

Superplastic Deformation Characteristics in Powder Metallurgy Al-Li Aluminum Alloy (분말야금 Al-Li 합금의 초소성 변형 특성)

  • 장영원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.129-130
    • /
    • 1999
  • The superplastic deformation characteristics is powder metallurgy(PM) Al-Li alloy has been studied within the framework of a recently proposed internal variable theory of superplasticity(SSP). The flow curves were obtained by performing a series of load relaxation tests at the temperature range from 45$0^{\circ}C$ to 52$0^{\circ}C$ It has been found that the overall flow curves were separated into the grain boundary sliding(GBS) and the accommodating dislocation glide processes/ The tensile curves were also obtained to clarify the superplastic deformation bahavior of PM Al-Li alloy. The microstructural features of PM AL-Li alloy have been examined through the transmission electron microscopy.

  • PDF