• Title/Summary/Keyword: Disk Drive

Search Result 593, Processing Time 0.027 seconds

An Expert System using Fuzzy and Binary logic for the Fault Diagnosis of Hard Disk Drive Test System (Hard Disk Drive 검사시스템의 고장 진단을 위한 퍼지-이진 논리 결합형 전문가 시스템에 관한 연구)

  • 문운철;이승철;남창우
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.6
    • /
    • pp.457-464
    • /
    • 2004
  • Hard Disk Drive (HDD) test system is an equipment for the final test of HDD product by iterative read/write/seek test. This paper proposes an expert system for the fault diagnosis of HDD test systems. The purposed expert system is composed with two cascade inference, fuzzy logic and conventional binary logic. The fuzzy logic determines the possibility of the system fault using the test history data, then, the binary logic inferences the fault location of the test system. The proposed expert system is tested in SAMSUNG HDD production line, KUMI, KOREA, and shows satisfactory results.

The determination of state feedback gains of XPTOS for disk drive servomechanism based on BESSEL filter prototype (XPTOS에 의한 디스크 드라이브 서보메커니즘의 구성시 BESSEL 필터 표준 함수에 근거한 상태피드백이득 결정)

  • Han, K.H.;Lee, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.980-983
    • /
    • 1996
  • This paper presents the method of determining state feedback gains of XPTOS for disk drive servomechanism based BESSEL filter prototype. A typical disk drive actuator can be modeled as second order dynamics for low frequencies. However, the response at higher frequencies shows resonant behavior which cannot be easily modeled. XPTOS consists of the nonlinear control region and the linear control region. In the linear control region, the poles of a second order nominal model of plant must be properly relocated by pole placement technique to attenuate resonant modes at high frequency and to attain minimum time state transition. It is difficult to select position to satisfy this object because velocity feedback gain is subjected to position feedback gain in XPTOS. Here poles of BESSEL filter prototype are selected to determine state feedback gains of XPTOS. Simulation results for disk drive servomechanism using XPTOS having state feedback gains by the proposed method are presented.

  • PDF

A Study on Fuzzy Expert System for the Fault Diagnosis of Hard Disk Drive Test System (Hard Disk Drive 검사 시스템의 고장 전단용 퍼지 전문가 시스템에 관한 연구)

  • Mun, Un-Cheol;Gwon, Hyeon-Tae;Nam, Chang-U
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.625-628
    • /
    • 2003
  • This paper proposes a fuzzy expert system for the fault diagnosis of Hard Disk Drive(HDD) test systems. The purposes of this system are diagnosis of HDD test systems, detection of system faults using test history, and presentation of the way of repair. Proposed Expert system is designed with Fuzzy logic and Binary Logic to present the way of repair using HDD tort result, HDD test history. The proposed system is simulated with actual data from SAMSUNG HDD product line in KUMI, KOREA, and show effective results.

  • PDF

Design of a GA-Based Fuzzy PID Controller for Optical Disk Drive (유전알고리즘을 이용한 Optical Disk Drive의 퍼지 PID 제어기 설계)

  • 유종화;주영훈;박진배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.598-603
    • /
    • 2004
  • An optical head actuator of an optical disk drive consists of two servo mechanisms for the focusing and the tracking to acquire data from disk. As the rotational speed of the disk grows, the utilized lag-lead-lead compensator has known to be above its ability for precisely controlling the optical head actuator. To overcome the difficulty, this paper propose a new controller design method for optical head actuator based fuzzy proportional-integral-derivative (PID) control and the genetic algorithm(GA). It employs a two-stage control structure with a fuzzy PI and a fuzzy PD control and is optimized by the GA to yield the suboptimal fuzzy PID control performance. It is shown the feasibility of the proposed method through a numerical tracking actuator simulation.

Influence of the variation of its geometry on the disk failure (디스크 형상 변화에 따른 파손에 끼치는 영향)

  • Kim, Jong-Man;Hwang, Hyo-Kune;Dan, Byung-Ju;Kim, Wae-Yeul;Lee, Jin-Woo
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.31-35
    • /
    • 2004
  • The speed competition of optical disk drive has been accelerated with the fast advancement of its storage density and data transmission technology. The continuous increase of the spinning speed of CD meets the unexpected and catastrophic failure of disk during the operation. The effect of its thickness and outer radius of disk were investigated to reduce stresses and J-integral around the crack tip. The effect of its thickness was considered ahead of the crack tip. In the effect of outer radius of disk, linear elastic fracture mechanics was used to obtain the critical crack length, which indicates the onset length for unstable crack growth. This approach is so significant as to detect the growing crack by disk drive before the catastrophic failure, which will provide the standard size of its safety for high-speed disk drive.

  • PDF

A Study on the Flow Friction Loss of a Shrouded Rotating Disk (밀폐된 단일 회전 원판 주위의 유동손실에 관한 연구)

  • 조성욱;임윤철
    • Tribology and Lubricants
    • /
    • v.19 no.5
    • /
    • pp.292-297
    • /
    • 2003
  • The fundamental fluid mechanics associated with the rotation of a smooth plane disk enclosed within a cylindrical chamber have been studied experimentally. In order to acquire systematic information pertinent to this problem torque and friction loss data were obtained over a wide range of disk Reynolds numbers for axial clearance-disk radius ratio H/R from 0.025 to 0.2 and radial tip gap-disk radius ratio s/R from 0.021 to 0.105. Loss analysis of hard disk drive (HDD) is presented to describe the contribution of windage loss of a rotating disk. The minimum loss form factor of HDD can be obtained from this analysis at each operation conditions.

A study on the flow friction loss of a shrouded rotating disk (밀폐된 단일 회전 원판 주위의 유동손실에 관한 연구)

  • 조성욱;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.159-165
    • /
    • 2001
  • The fundamental fluid mechanics associated with the rotation of a smooth plane disk enclosed within a cylindrical chamber have been studied experimentally. In order to acquire systematic information pertinent to this problem torque and friction loss data were obtained over a wide range of disk Reynolds numbers for axial clearance-disk radius ratio H/R from 0.025 to 0.2 and radial tip gap-disk radius ratio s/R from 0.021 to 0.105. Loss analysis of hard disk drive(HDD) is presented to describe the contribution of windage loss of a rotating disk. The minimum loss from factor of HDD can be obtained from this analysis at each operation conditions.

  • PDF

Control for Minimizing Power Consumption in Micro Disk Drives (마이크로 디스크 드라이브의 전력소모 최소화 제어)

  • 백상은;심준석;강창익
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.164-170
    • /
    • 2004
  • Recently, the demand for micro hard disk drive that provides high-capacity removable storage for handhold electronic devices is growing very rapidly Reducing power consumption is one of the primary control objectives in micro disk drives. The input power delivered to the seek servo system is consumed as heat by the transistors of power amplifier and motor coil resistance. In this paper, we present a new seek servo controller for minimizing the power consumption. We use a Fourier decomposition and nonlinear programming to determine the optimum seek profile that minimizes the power consumption. Also, the trajectory tracking controller is developed for exact tracking of the optimum seek profile. Finally, we present some experimental results using a commercially available micro disk drive in order to demonstrate the superior performance of the proposed controller.

Dynamic Analysis of the Effect of Base Flexibility on a Spinning Disk Dynamics in a Small Size Disk Drive (소형 디스크 드라이브에 있어서 베이스 강성이 회전하는 원판에 미치는 동적영향 분석)

  • Lee, Sung-Jin;Hong, Soon-Kyo;Cheong, Young-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.601-606
    • /
    • 2001
  • Free vibration analysis was performed for a spinning disk/spindle system mounted on a flexible baseplate. A simplified model was presented considering the effects of the baseplate flexibility on a disk/spindle system, and the equations of motion were derived by the assumed mode method and Lagrange's equation. From the results of the tree vibration analysis, the variations of the natural frequencies were investigated by changing rotating speed, baseplate thickness. They were attributed to the coupling between the flexible modes of the spinning disk/spindle system and the baseplate. This simplified model was used to predict the dynamic characteristics of a small size disk drive. The validity of the simplified model was verified by experiments and FE analysis.

  • PDF

A Study on Ultra Precision Rotational Device Using Smooth Impact Drive Mechanism (스무즈 임팩트 구동 메커니즘을 이용한 초정밀 회전장치에 관한 연구)

  • Lee, Sang-Uk;Jeon, Jong-Up
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.140-147
    • /
    • 2008
  • This paper represents an ultra precision rotational device where the smooth impact drive mechanism (SIDM) is utilized as driving mechanism. Linear motions of piezoelectric elements are converted to the rotational motion of disk by frictional forces generated between the rotational disk and the friction part that is attached to the piezoelectric element. This device was designed to drive the rotational disk using slip-slip motion mechanism instead of stick-slip motion mechanism occurred in conventional impact drive mechanism. Experimental results show that the angular velocity is increased in proportion to the magnitude and frequency of supplied voltage to piezoelectric element and decreased as the preload is increased. In our device, the smooth rotational motion was obtained when the driving frequency has been reached to 500Hz under the driving voltage of 100V.