• Title/Summary/Keyword: Disinfection treatment

Search Result 372, Processing Time 0.029 seconds

Inactivation Effect of Cryptosporidium by Ozone and UV (Ozone과 UV를 이용한 Cryptosporidium의 불활성화 효과)

  • Kim, Yun-Hee;Lee, Chul-Hee;Lee, Shun-Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.31-39
    • /
    • 2007
  • The objective of this study was to investigate the inactivation characteristics of Cryptosporidium oocysts by ozone and UV and to suggest the better, disinfection method. The inactivation CT value of 1 log(90%) and 2 log(99%) in of one disinfection, which is an index of disinfection for inactivation effect by ozone, were respectively 5.77 $mg{\cdot}min/L$ and 21.30 $mg{\cdot}min/L$. The inactivation in UV disinfection was not affected by pHs(5, 7 and 9), low turbidity(5 and below NTU) and UV intensity(0.2 and 0.6 $mWs/cm^2$) but obviously decreased at high turbidity over 20 NTU. Therefore UV disinfection capacity can be obtained when a good turbidity removal in drinking water treatment process is achieved. And if oocysts is exposed by high UV over 0.6 mWs/cm2 during enough time, the better inactivation effect will be obtained.

Study on disinfection by-products formation according to kind of salt in on-site production (정수장 현장제조염소의 브로메이트와 클로레이트의 생성 특성연구)

  • Min, Byungdae;Chung, Hyenmi;Kim, Taewook;Park, Juhyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.5
    • /
    • pp.575-581
    • /
    • 2015
  • Although disinfection in drinking water treatment plants provides a safer water supply by inactivating pathogenic microorganisms, harmful disinfection by-products may be formed. In this study, the disinfectant, chlorine, was produced on-site from the electrolysis of salt (NaCl), and the by-products of the disinfection process, bromate and chlorate, were analyzed. The provisional guideline levels for bromate and chlorate in drinking water are $10{\mu}g/L$ and $700{\mu}g/L$, in Korea, respectively. Bromide salt was detected at concentrations ranging from 6.0 ~ 622 mg/kg. Bromate and chlorate were detected at concentrations ranging from non-detect (ND) ~ 45.3mg/L and 40.5 ~ 1,202 mg/L, respectively. When comparing the bromide concentration in the salt to the bromate concentration in the chlorine produced by salt electrolysis, the correlation of bromide to bromate concentration was 0.870 (active chlorine concentration from on-site production: 0.6-0.8%, n=40). The correlation of bromate concentration in the chlorine produced to that in the treated water was 0.866.

Application of Response Surface Methodology to Optimize the Performance of the Electro-Chlorination Process (전기분해 염소소독공정의 반응표면분석법을 이용한 차아염소산나트륨 발생 최적화)

  • Ju, Jaehyun;Park, Chan-gyu
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.3
    • /
    • pp.167-175
    • /
    • 2022
  • Background: Disinfection is essential to provide drinking water from a water source. The disinfection process mainly consists of the use of chlorine and ozone, but when chlorine is used as a disinfectant, the problem of disinfection by-products arises. In order to resolve the issue of disinfection by-products, electro-chlorination technology that produces chlorine-based disinfectants from salt water through electrochemical principles should be applied. Objectives: This study surveys the possibility of optimally producing active chlorine from synthetic NaCl solutions using an electro-chlorination system through RSM. Methods: Response surface methodology (RSM) has been used for modeling and optimizing a variety of water and wastewater treatment processes. This study surveys the possibility of optimally producing active chlorine from synthetic saline solutions using electrolysis through RSM. Various operating parameters, such as distance of electrodes, sodium chloride concentration, electrical potential, and electrolysis time were evaluated. Results: Various operating parameters, such as distance of electrodes, sodium chloride concentration, electrical potential, and electrolysis time were evaluated. A central composite design (CCD) was applied to determine the optimal experimental factors for chlorine production. Conclusions: The concentration of the synthetic NaCl solution and the distance between electrodes had the greatest influence on the generation of hypochlorite disinfectant. The closer the distance between the electrodes and the higher the concentration of the synthetic NaCl solution, the more hypochlorous acid disinfectant was produced.

Application of Data Mining for Coagulant Dosage of Water Treatment Plants Corresponding to Input Conditions (원수조건에 따른 상수도 응집제 종류와 주입량 결정을 위한 데이터 마이닝 적용)

  • Bae Hyeon;Kim Sungshin;Choi Dae-Won;Lee Seung-Tae;Kim Yejin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.53-58
    • /
    • 2005
  • Water shortages are gradually accelerating because higher standards of living are required and water resources are more heavily utilized. Therefore, effective water treatment is necessary in order to retain the required qualify and amount of water. General treatment includes coagulation, flocculation, filtering, and disinfection. coagulation, flocculation, and disinfection are major components of water treatment processes. In this paper, a new automatic decision algorithm is proposed for coagulation. The proposed method shows how to determine the coagulant type and amount using data mining techniques.

Successful nonsurgical treatment of type II dens invaginatus with 5 root canals using a self-adjusting file: a case report

  • George Taccio de Miranda Candeiro;Antonio Sergio Teixeira de Menezes;Ana Carolina Saldanha de Oliveira;Flavio Rodrigues Ferreira Alves
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.2
    • /
    • pp.17.1-17.8
    • /
    • 2023
  • The present report describes the endodontic treatment of an Oehlers type II dens invaginatus in a maxillary lateral incisor with 5 root canals, an extremely rare condition. Apical periodontitis and related symptoms were noted. Cone-beam computed tomography was used to aid the diagnosis, reveal tooth morphology, and assist in canal location. The pulp chamber was carefully accessed, and the root canals were explored under magnification. All root canals were prepared with an R25 Reciproc Blue system and sodium hypochlorite (NaOCl) irrigation. After initial preparation, a self-adjusting file (SAF) with NaOCl and ethylenediaminetetraacetic acid was used to complement the disinfection. Additionally, calcium hydroxide medication was applied. Vertical compaction was used to fill the canals with a calcium silicate-based endodontic sealer and gutta-percha. After 12 months, the patient exhibited healing of the periapical region, absence of symptoms, and normal dental function. In conclusion, this nonsurgical treatment protocol was successful in promoting the cure of apical periodontitis. Both complementary disinfection with an SAF and use of calcium hydroxide medication should be considered when choosing the best treatment approach for dens invaginatus with very complex anatomy.

Development of a Concentration Prediction Model for Disinfection By-product according to Introduce the Advanced Water Treatment Process in Water Supply Network (고도정수처리에 따른 상수도 공급과정에서의 소독부산물 농도 예측모델 개발)

  • Seo, Jeewon;Kim, Kibum;Kim, Kibum;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.5
    • /
    • pp.421-430
    • /
    • 2017
  • In this study, a model was developed to predict for Disinfection By-Products (DBPs) generated in water supply networks and consumer premises, before and after the introduction of advanced water purification facilities. Based on two-way ANOVA, which was carried out to statistically verify the water quality difference in the water supply network according to introduce the advanced water treatment process. The water quality before and after advanced water purification was shown to have a statistically significant difference. A multiple regression model was developed to predict the concentration of DBPs in consumer premises before and after the introduction of advanced water purification facilities. The prediction model developed for the concentration of DBPs accurately simulated the actual measurements, as its coefficients of correlation with the actual measurements were all 0.88 or higher. In addition, the prediction for the period not used in the model development to verify the developed model also showed coefficients of correlation with the actual measurements of 0.96 or higher. As the prediction model developed in this study has an advantage in that the variables that compose the model are relatively simple when compared with those of models developed in previous studies, it is considered highly usable for further study and field application. The methodology proposed in this study and the study findings can be used to meet the level of consumer requirement related to DBPs and to analyze and set the service level when establishing a master plan for development of water supply, and a water supply facility asset management plan.

New trends of root canal disinfection and treatment strategies for infected root canal based upon evidence-based dentistry

  • Cho, Yong-Bum
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.608-608
    • /
    • 2003
  • The main objectives of root canal therapy are cleaning and shaping and then obturating the root canal system in 3 dimensions to prevent reinfection. Many instrumentation techniques and devices, supported by an irrigation system capable of removing pulp tissue remnants and dentin debris, have been proposed to shape root canals. But current regimens in chemomechanical debridement using instrumentation and irrigation with NaOCl are not predictably effective in root canal disinfection. These findings are not surprising because the root canal system is complex and contains numerous ramifications and anatomical irregularities. The microorganisms in root canals not only invade the anatomic irregularities of the root canal system but also are present in the dentinal tubules. Therefore further disinfection with an effective antimicrobial agent may be necessary and it well1mown that use of intracanal medication will lower bacterial count in infected root canals. Calcium hydroxide has a long history of use in endodontics, and more attention has been given to the use of calcium hydroxide as intracanal dressing for the treatment of infected pulp. However, when treatment is completed in one visit, no intracanal medications other than intracanal irrigants are used. Recently, a mixture of a tetracycline isomer, an acid, and a detergent(MTAD), has been introduced as a final rinse for disinfuction of the root canal system. It has been shown that MTAD is able to remove the smear layer with minimal erosive changes on the surface of dentin, and is effective against Enterococcus faecalis, a microorganism resistant to the action of other antimicrobial medications. In another study, the ability of MTAD was investigated to disinfect contaminated root canals with whole saliva and compared its efficacy to that of NaOCl Based on the results, it seems that MTAD is significantly more effective than 5.25% NaOCl in eradicating bacteria from infected root canals. In the cytotoxicity evaluation, MTAD is less cytotoxic than engenol, 3% $H20_2,\;Ca(OH)_2$ paste, 5.25% NaGCl, Peridex, and EDTA and more cytotoxic than 2.63%,1.31% and 0.66% NaOCl. Is it promising or transient?

  • PDF

Study on performance improved design of pressure-type ozone contactor in multistorey water treatment plant by CFD (CFD에 의한 수직형 정수처리 실증시설 내 압력식 오존접촉조 성능개선에 관한 연구)

  • Choi, Jong-Woong;Kim, Seong-Su;Kim, Jeong-Hyun;Kim, Kwanyeop
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.431-440
    • /
    • 2014
  • The ozonation process has been widely used for drinking water disinfection around the world. Recently, the pressurized ozone contactor, in which the side stream typed ozone injection method is installed, has been applied to water treatment system. In this study, numerical calculations were conducted to compare prototype and screw-type ozone contactors based on hydraulic effectiveness in more details. The prototype ozone contactor was already installed and operated in domestic water treatment plant, and the screw-type is the suggested one for improving ozone contact efficiency installing the screw plate to the prototype. Screw turn numbers of screw plate were changed as 3, 5, 7 and 9, respectively for numerical simulation. The CT(concentration of disinfectant in mg/L times time in minutes) value was considered as one of the options for evaluating disinfection ability. From the results, it could be concluded that the performance of the screw-type is higher than that of the protype contactor by controlling the variable T as the tracer time. Also, Morill index of the screw-type(turn numbers = 5 ) appeared to be lower than the other.

Inactivation of Indicating Microorganisms in Ballast Water Using Chlorine Dioxide (이산화염소를 이용한 선박평형수 내 지표 미생물 불활성화)

  • Park, Jong-Hun;Sim, Young-Bo;Kang, Shin-Young;Kim, Sang-Hyoun
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.3
    • /
    • pp.111-117
    • /
    • 2018
  • Disinfection of ballast water using chlorine dioxide was investigated under various initial microorganism contents, dose concentrations and pH values. Kinetics of microorganism inactivation and byproduct generation of chlorine dioxide treatment were compared with the chlorine treatment. Results of treatments with chlorine dioxide concentrations of 0 to $10mg\;Cl_2/L$ showed that The optimum concentration of chlorine dioxide required for disinfection of ballast water was 1 mg/L. The difference among the second order reaction constants for bacterial disinfection at pH 7.2 to 9.2 for chlorine dioxide was less than 5% for both bacteria. This result implied that the bactericidal effects of chlorine dioxide was independent of the pH in the examined range. On the other hand, the inactivation kinetics of chlorine for E. coli and Enterococcus decreased by 17% and 25%, respectively, when pH increased from 7.2 to 9.2. The bactericidal power of chlorine dioxide was superior to sodium hypochlorite above pH 8.2, the average pH value of sea water. Furthermore, treatments of chlorine dioxide generated less harmful byproducts than chlorine and had a long-term disinfection effect on bacteria and phytoplankton from the results of experiment for 30 days. Chlorine dioxide would be a promising alternative disinfectant for ballast water.

Effects of Disinfectant Concentration, pH, Temperature, Ammonia, and Suspended Solids on the Chlorine Disinfection of Combined Sewer Overflow (소독제 농도, pH, 온도, 암모니아 농도, 부유물질이 강우 월류수 염소 소독에 미치는 영향)

  • Kim, Sang-Hyoun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.10
    • /
    • pp.685-690
    • /
    • 2014
  • The treatment of combined sewer overflow (CSO) is one of potential concerns in domestic wastewater treatment in Korea due to the pre-announce of CSO regulations. This work investigated the effects of disinfectant (NaOCl) concentration (0.11 to 4.0 mg $Cl_2/L$), pH (6.5 to 8.0), temperature (15 to $25^{\circ}C$), ammonia (10 to 41 mg N/L), and suspended solids (91 to 271 mg SS/L) on the chlorine disinfection of CSO. The effect of NaOCl concentration on the pseudo-$1^{st}$ order reaction rate for total coliform inactivation was described well with a saturation-type model with the half-velocity constant of 1.212 mg/L. The total coliform inactivation reaction rate decreased with SS and pH, and increased with temperature. Ammonia in the examined range did not affect the disinfection kinetics. A chlorine contact tank with the injection chlorine level of 1 mg $Cl_2/L$ and the hydraulic retention time of 1.25 min is estimated to reduce total coliform from $1{\times}10^5MPN/mL$ to 1,000 MPN/mL at 271 mg SS/L, $15^{\circ}C$, and pH 8.0. Chlorine would be a proper option for the disinfection of CSO.