• Title/Summary/Keyword: Disinfection treatment

Search Result 372, Processing Time 0.019 seconds

Effect of Wangsuk Stream on NOM and Chlorinated DBPFPs in Han River Water (왕숙천 유입에 따른 한강본류의 천연유기물질과 염소소독부산물 생성능 변화)

  • Park, Hyeon;Kim, Chang-Mo;Chang, Hyun-Seong;Kim, Hyun-Suk;Park, Chang-Min;Yu, Myong-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1031-1037
    • /
    • 2006
  • The main purposes of this study were to compare the characteristics of fractionated natural organic matters(NOM) from Han River water and Wangsuk(W) stream water, and to investigate the relationships between NOM and the formation of disinfection by products(DBPs). Three types of resin such as XAD-4, XAD-7HP and IRC-50 were used to isolate the water samples into three organic fractions. The DOC concentrations of raw waters were relatively low($1.5{\sim}3.3$ mg/L) at all seasons. The hydrophilic was the major constituent, contributing $44{\sim}63%$ of the total NOM and hydrophobic $21{\sim}33%$, transphilic $16{\sim}31%$, respectively. The formation of trihalomethans(THMs) was highly influenced by particulated NOM especially in the rainy season, whereas haloaceticacid forming potentials(HAAFPs) depended more on the hydrophilic fraction of dissolved NOM which is known to be difficult to be removed through conventional processes. The NOM of W stream was characterized as 15% hydrophobic, 9% transphilic, and 76% hydrophilic. In the fractionation of NOM using resins, $20{\sim}40%$ of the NOM in W tributary water could not be clearly isolated, whereas, 85% of the NOM in the raw water was recovered. Although the DOC concentration of tributary water was higher than the raw waters from the Han River, the DBPFPs was approximately 40% of the raw waters. In DBPFPs aspect, W stream has less effect than Han River water itself. Bromide in tributary waters discharged from waste water treatment plants has been found to shift the distribution of THMs and HANs to the more brominated DBPs.

Application of Enhanced Coagulation for Nakdong River Water Using Aluminium and Ferric Salt Coagulants (낙동강 원수를 대상으로 Al염계 및 Fe염계 응집제를 이용한 고도응집의 적용)

  • Moon, Sin-Deok;Son, Hee-Jong;Yeom, Hoon-Sik;Choi, Jin-Taek;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.9
    • /
    • pp.590-596
    • /
    • 2012
  • Enhanced coagulation is best available technologies to treat NOM in water to produce clean drinking water. In this research, the comparison experiments between conventional coagulation (CC) and enhanced coagulation (EC) using 4 type coagulants i.e., ferric chloride, aluminium sulphate (alum), poly aluminium sulphate organic magnesium (PSOM) and poly aluminium chloride (PACl) were performed in terms of surrogate parameters such as dissolved organic carbon (DOC), trihalomethane formation potential (THMFP), haloacetic acid formation potential (HAAFP) and zeta potential variation in order to find out the most effective coagulant and conditions to fit Nakdong River water. When applied to EC process, the turbidity removal efficiency did not increased gradually compared to the CC process when adding coagulants. Furthermore, the removal efficiency of turbidity became decreased much more as coagulants were added increasingly whereas the removal efficiency of DOC, THMFP and HAAFP became increased by 13~18%, 9~18% and 9~18% respectively compared to the CC process. The characteristics of turbidity removal showed relatively high removal efficiency considering the pH variation in entire pH range when using $FeCl_3$ and PACl. Additionally, in case of alum and PSOM steady removal efficiency was shown between pH 5 and pH 8. In terms of DOC surrogate the coagulants including 4 type coagulants indicated high removal efficiency between pH 5 and pH 7. The removal efficiency of dissolved organic matter (DOM) in EC between less than 1 kDa and more than 10 kDa augmented by 11~21% and 16% respectively compared to the CC process. The removal efficiency of hydrophobic and hydrophilic organic matter proved to be increased by 27~38% and 11~15% respectively. In conclusion, the most effective coagulant relating to EC for Nakdong River water was proved to be $FeCl_3$ followed by PSOM, PAC and alum in order.