• Title/Summary/Keyword: Disinfection byproducts

Search Result 33, Processing Time 0.029 seconds

Formation Characteristics and Control of Disinfection Byproducts in a Drinking Water Treatment Plant Using Lake Water (호소수를 원수로 사용하는 정수장의 소독부산물 생성 특성 및 제어 방안)

  • Lee, Kichang;Gegal, Bongchang;Choi, Ilhwan;Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.5
    • /
    • pp.269-276
    • /
    • 2015
  • This study investigated the influence of characteristics of natural organic matter (NOM) on the formation of disinfection by-products (DBPs), and proposed the control strategies of DBPs formation in a drinking water treatment plant using lake water in Gyeongsangbuk-do. The fluorescence excitation-emission matrix analysis results revealed that the origins of NOM in raw waters to the plant were a mixture of terrestrial and microbial sources. Molecular size distributions and removals of NOM fractions were evaluated with a liquid chromatography-organic carbon detector (LC-OCD) analysis. Humic substances and low molecular weight organics were dominant fractions of NOM in the raw water. High molecular weight organics were relatively easier to remove through coagulation/precipitation than low molecular weight organics. The concentrations of DBPs formed by pre-chlorination increased through the treatment processes in regular sequence due to longer reaction time. Chloroform (74%) accounts for the largest part of trihalomethanes, followed by bromodichloromethane (22%) and dibromochloromethane (4%). Dichloroacetic acid (50%) and trichloroacetic acid (48%) were dominant species of haloacetic acids, and brominated species such as dibromoacetic acid (2%) were minimal or none. Dichloroacetonitrile (60%) accounts for the largest part of haloacetonitriles, followed by bromochloroacetonitrile (30%) and dibromoacetonitrile (10%). The formation of DBPs were reduced by 16~44% as dosages of pre-chlorine decreased. Dosages of pre-chlorine was more contributing to DBPs formation than variations of dissolved organic contents or water temperature.

A Study on Formation Pattern of DBPs by Disinfection of Drinking Raw Water II (음용 원수의 염소소독에 의한 소독부산물 생성패턴에 관한 연구 II)

  • Lee, Kang Jin;Hong, Jee Eun;Pyo, Heesoo;Park, Song-Ja;Yoo, Je Kang;Lee, Dae Woon
    • Analytical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.69-81
    • /
    • 2004
  • The formation pattern of DBPs (disinfection by-products) in raw water treated with hypochlorite, chlorine disinfectant was studied. TOC (total organic carbon), residual chlorine, turbidity and 14 DBPs in raw water from Han-river and Nakdong river during 1 ~ 14 days were determined. Total DBPs in Han river was 101.3 ng/mL (789.6 nM) after 7days and THMs (trihalomethanes) are the dominant portion of 68%. HAAs (haloacetic acids) and chloral hydrate were determined 19% and 10% respectively. In Nakdong river total DBPs was 98.4 ng/mL (678.6 nM) and dominant class was HAAs. (55.8 ng/mL, 57%) THMs(34%) and N-compounds like HANs (haloacetonitriles, 5%) and chloropicrin were increased. It may be explained that high concentration of NH4-N in Nakdong river react with chlorine produced chloramine and this formed different pattern of DBPs. As a result, total DBPs formation pattern depends on raw water and disinfectant and in generally the initial concentration of acidic HAAs was high and THMs was increased gradually.

Analysis of Trace Levels of Lodinated Trihalomethanes in Water Using Headspace - GC/ECD (Headspace - GC/ECD를 이용한 수중의 미량 요오드계 트리할로메탄류 분석)

  • Son, Hee-Jong;Song, Mi-Jung;Kim, Kyung-A;Yoom, Hoon-Sik;Choi, Jin-Taek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.1
    • /
    • pp.35-41
    • /
    • 2014
  • Trihalomethanes (THMs) are formed as a results of the reaction of residual chlorine, used as a disinfectant in drinking water, with the organic matter in raw water. Although chlorinated and brominated THMs are the most common disinfection byproducts (DBPs) reported, iodinated THMs (I-THMs) can be formed when iodide is present in raw water. I-THMs have been usually associated with several medicinal or pharmaceutical taste and odor problems and is a potential health concern since they have been reported to be more toxic than their brominated and chlorinated analogs. Currently, there is no published standard analytical method for I-THMs in water. An automated headspace-gas chromatography/electron capture detector (GC/ECD) technique was developed for routine analysis of 10 THMs including 6 I-THMs in water samples. The optimization of the method is discussed. The limits of detection (LOD) and limits of quantification (LOQ) range from 12 ng/L to 56 ng/L and from 38 ng/L to 178 ng/L for 10 THMs, respectively. Matrix effects in river water, sea water and wastewater treatment plant (WWTP) final effluent water were investigated and it was shown that the method is suitable for the analysis of trace levels of I-THMs, in a wide range of waters. The method developed in the present study has the advantage of being rapid, simple and sensitive.

Evaluation of Pre-ozone Treatment and Economic Efficiency as Changing Raw Water Quality (상수원수 수질변화에 따른 전오존 처리효과 및 경제성 평가)

  • Choi, Dong-Hoon;Park, Jin-Sik;Moon, Choo-Yeun;Lee, Jae-Yong;Ryu, Dong-Choon;Jang, Seong-Ho;Kwon, Ki-Won;Lee, Soo-Ae
    • Journal of Environmental Science International
    • /
    • v.22 no.4
    • /
    • pp.453-461
    • /
    • 2013
  • This study, changes in raw water quality is to indicate on the efficiency of ozone treatment of each pollutant as compared to derive the appropriate operating measures. The appropriate selection for injection rate of pre-ozone and did not inject pre-ozone assess changes in the water. When good water quality, you not injected of pre-ozone to evaluate the economic efficiency of electricity and put the most cost-effective ozone concentration were evaluated. Evaluation remove organic matter and chlorophyll-a concentration level in experiments with each factor of the water DOC> 2.5 mg/L, THMFP> 70 ${\mu}g/L$, Chl-a> 30 $mg/m^3$or less constant process, if you do not need to put pre-ozone showed little impact. It also does not put you in pre-ozone appropriate produce enough power rate savings was calculated as approximately 90 million won. Ability to remove organic materials and the ability to produce disinfection byproducts, and cost-effective decisions by considering the concentration of injection if pre-ozone 1 mg/L was investigated by the appropriate concentration of ozone injection.

Selection of the Optimum Organic Matter Index for Surface Water Quality Management (지표수 수질관리를 위한 적정 유기물질지표 선정)

  • Han, Dae Ho;Choi, Ji-Yong
    • Journal of Environmental Policy
    • /
    • v.10 no.4
    • /
    • pp.61-80
    • /
    • 2011
  • Through concentrated investments in environmental regulations centered around BOD, which is a biodegradable matter index, and basic environmental infrastructures, national BOD pollution level has continuously improved. Nonetheless, limitations of BOD management system has become evident through nation-wide stagnation and/or increases of refractory organic matters, such as COD, at main drinking water sources, and the need for a new index, which can easily indicate different environmental conditions, has increased. Therefore, this study suggests a new organic management index for a proper management of surface water. $COD_{Cr}$ and TOC were examined as candidates for surface water quality management index, and it was found that TOC was more appropriate than $COD_{Cr}$ as an organic matter management index. Through this study, it was found that TOC possesses following qualities: a more representative index; international acceptability; monitoring program is easier; better availability of analysis techniques; better accuracy and precision of analysis; less time required for analysis; ease of operation; management of disinfection byproducts; connection with present policies; existence of foreign and domestic application case studies; and correlation with water ecosystem.

  • PDF

Effects of magnetic ion exchange resin with PACI coagulation on removal of natural organic matter and MF fouling (자성체 이온교환 수지와 PACI 응집에 의한 국내 주요 수계 내 자연유기물 제거 특성 및 막오염 저감 효과)

  • Choi, Yang Hun;Jeong, Young Mi;Kim, Young Sam;Lee, Seung Ryul;Kweon, Ji Hyang;Kwon, Soon Buhm
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.131-140
    • /
    • 2008
  • The application of magnetic ion exchange resin($MIEX^{(R)}$) is effective for natural organic matter(NOM) removal and for control of the formation of disinfection byproducts(DBPs). NOM removal is also enhanced by adding $MIEX^{(R)}$ with coagulant such as polyaluminium chloride(PACl) in conventional drinking water treatment systems. In the application of $MIEX^{(R)}$, it is important to understand changes of NOM characteristics such as hydrophobicity and molecular weight distributions with $MIEX^{(R)}$ or $MIEX^{(R)}$+coagulant treatment.To observe characteristics of NOM by treatment with $MIEX^{(R)}$ or $MIEX^{(R)}$+coagulant, four major drinking water sources were employed. Results showed that the addition of $MIEX^{(R)}$ to coagulation significantly reduced the amount of coagulant required for the optimum removal of dissolved organic matter(DOC) and turbidity in the all four waters. The DOC removal was also increased approximately 20%, compared to coagulant treatment alone. The process with $MIEX^{(R)}$ and coagulant showed that complementary removal of hydrophobic and hydrophilic fraction of DOC. The combined processes preferentially removed the fractions of intermediate (3,000-10,000 Da) and low (< 500 Da) molecular weight. The microfiltration test showed that membrane cake resistance was decreased for waters with flocs from $MIEX^{(R)}$+coagulant. A porous layer was formed to $MIEX^{(R)}$ on the membrane surface and the layer consequently inhibited settling of coagulant flocs, which could act on a foulant.

Understanding N-nitrosodimethylamine (NDMA) formation during chloramination: Precursor characteristics, pathways and mitigation (상수 염소 처리 과정중에 형성되는 N-니트로소디메틸아민에 대한 이해: 전구체의 특징, 경로와 경감)

  • Seid., Mingizem Gashaw;Son, Aseom;Cho, Kangwoo;Hong, Seokwon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.3
    • /
    • pp.279-289
    • /
    • 2018
  • N-nitrosodimethylamine (NDMA) is a class of disinfection byproducts and a frequently detected nitrosamine with carcinogenic potentials. This review summarizes NDMA precursors, their formation mechanisms in chloraminated water, and mitigation strategies. Understanding the formation mechanism and characteristics of precursors is essential for developing a mitigation strategy. Dimethylamine (DMA), the most widely studied NDMA precursor, has an NDMA molar yield up to 3%. In comparison, a subset of tertiary amines, e.g., pharmaceuticals, generate up to 90% upon chloramination. Potent NDMA precursors, are characterized by their negative partial charge, low planarity values and molecular weight, and high bond length and $pK_a$ values. A nucleophilic substitution of tertiary amine on chloramine is a key reason for the high NDMA yield from the most potent NDMA precursors. The distribution and fate of NDMA in surface water, aquifers, and its formation in the distribution system can be mitigated through two strategies: (1) degrading or/removing NDMA after its formation and (2) pre-treatment of its precursor's prior chloramination.

Fates and Removals of Micropollutants in Drinking Water Treatment (정수처리 과정에서의 미량오염물질의 거동 및 제거 특성)

  • Nam, Seung-Woo;Zoh, Kyung-Duk
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.5
    • /
    • pp.391-407
    • /
    • 2013
  • Micropollutants emerge in surface water through untreated discharge from sewage and wastewater treatment plants (STPs and WWTPs). Most micropollutants resist the conventional systems in place at water treatment plants (WTPs) and survive the production of tap water. In particular, pharmaceuticals and endocrine disruptors (ECDs) are micropollutants frequently detected in drinking water. In this review, we summarized the distribution of micropollutants at WTPs and also scrutinized the effectiveness and mechanisms for their removal at each stage of drinking water production. Micropollutants demonstrated clear concentrations in the final effluents of WTPs. Although chronic exposure to micropollutants in drinking water has unclear adverse effects on humans, peer reviews have argued that continuous accumulation in water environments and inappropriate removal at WTPs has the potential to eventually affect human health. Among the available removal mechanisms for micropollutants at WTPs, coagulation alone is unlikely to eliminate the pollutants, but ionized compounds can be adsorbed to natural particles (e.g. clay and colloidal particles) and metal salts in coagulants. Hydrophobicities of micropollutants are a critical factor in adsorption removal using activated carbon. Disinfection can reduce contaminants through oxidation by disinfectants (e.g. ozone, chlorine and ultraviolet light), but unidentified toxic byproducts may result from such treatments. Overall, the persistence of micropollutants in a treatment system is based on the physico-chemical properties of chemicals and the operating conditions of the processes involved. Therefore, monitoring of WTPs and effective elimination process studies for pharmaceuticals and ECDs are required to control micropollutant contamination of drinking water.

Study on the characterization of dissolved organic matters in Nakdong River (낙동강의 용존 유기물질 특성에 관한 연구)

  • Heo, Seong-Nam;Park, Jeong-Min;Im, Tae-Hyo;Shin, Chan-Ki
    • Journal of environmental and Sanitary engineering
    • /
    • v.22 no.3
    • /
    • pp.13-26
    • /
    • 2007
  • Changes in the characteristics of dissolved organic matter was studied at selected stations in the Nakdong river basin using physical and chemical methods. Characteristics of dissolved organic matters were analysed and assessed. Production of disinfection byproducts were also investigated. 1. Result of relatedness study among each items of analyses showed that relatedness on BOD values were highest with cattle excrement treatment facilities where there is no synthetic organic materials and relatedness on $COD_{Mn}$ were highest at the mainstream Nakdong river. In case of $COD_{Cr}$ (which has more oxidative power than $COD_{Mn}$), the values were higher in the sidestreams indicating the higher content of recalcitrant compounds. The relatedness values for the $UV_{254}$ also showed higher values in the sidestreams and treatment facilities than mainstream indicating the presence of organic aromatic compounds. 2. Ratio of DOC on total organic carbon were higher in the mainstream which is attributable to the influent particulate organic materials produced by agricultural activities. The values were 10-15% higher in the mainstream compared with sidestreams. 3. Result of biodegradability test indicate that concentrations of recalcitrant DOC were higher in the sidestreams than in the mainstream. The values of recalcitrant DOC were higher with the forest stream indicating the effect of soil oriented humic substances. 4. Result of THM production test carried out at 10 stations in the Nakdong river show that $CHCl_3$ was detected with the highest value and the value was highest at Waekwan station.

Removal of Dissolved Organic Nitrogen from Surface Water and Reclaimed Water by Coagulation (지표수 및 재이용수내 용존 유기질소의 응집처리)

  • Lee, Wontae;Choi, June-Seok;Oh, Hyun Je
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.11
    • /
    • pp.729-734
    • /
    • 2012
  • During chlorination processes dissolved organic nitrogen (DON) can form toxic nitrogenous disinfection byproducts and organic chloramines which have little or no bactericidal activity. DON needs to be removed before chlorination processes to reduce the formation of those products. This study investigated the removal of DON from surface water and reclaimed water by coagulation with aluminum sulfate (alum) and a cationic polymer (polyDADMAC). Removal characteristics of dissolved organic carbon (DOC) and ultraviolet absorbance at 254 nm ($UVA_{254}$) were compared with that of DON. Coagulation with alum removed DON, DOC, and $UVA_{254}$ with similar trends, but the removal of $UVA_{254}$ was highest. A dual coagulation strategy of alum and cationic polymer improved the removal of DON. Coagulation with cationic polymer alone was not effective due to its narrow range of charge neutralization. DON in reclaimed water was easier to remove than that in surface water, and higher molecular weight fraction (>10,000 Da) of DON was preferentially removed.