• Title/Summary/Keyword: Disease gene identification

Search Result 237, Processing Time 0.026 seconds

Multiplex TaqMan qPCR Assay for Detection, Identification, and Quantification of Three Sclerotinia Species

  • Dong Jae Lee;Jin A Lee;Dae-Han Chae;Hwi-Seo Jang;Young-Joon Choi;Dalsoo Kim
    • Mycobiology
    • /
    • v.50 no.5
    • /
    • pp.382-388
    • /
    • 2022
  • White mold (or Sclerotinia stem rot), caused by Sclerotinia species, is a major air, soil, or seed-transmitted disease affecting numerous crops and wild plants. Microscopic or culture-based methods currently available for their detection and identification are time-consuming, laborious, and often erroneous. Therefore, we developed a multiplex quantitative PCR (qPCR) assay for the discrimination, detection, and quantification of DNA collected from each of the three economically relevant Sclerotinia species, namely, S. sclerotiorum, S. minor, and S. nivalis. TaqMan primer/probe combinations specific for each Sclerotinia species were designed based on the gene sequences encoding aspartyl protease. High specificity and sensitivity of each probe were confirmed for sclerotium and soil samples, as well as pure cultures, using simplex and multiplex qPCRs. This multiplex assay could be helpful in detecting and quantifying specific species of Sclerotinia, and therefore, may be valuable for disease diagnosis, forecasting, and management.

Molecular Identification and Real-time Quantitative PCR (qPCR) for Rapid Detection of Thelohanellus kitauei, a Myxozoan Parasite Causing Intestinal Giant Cystic Disease in the Israel Carp

  • Seo, Jung-Soo;Jeon, Eun-Ji;Kim, Moo-Sang;Woo, Sung-Ho;Kim, Jin-Do;Jung, Sung-Hee;Park, Myoung-Ae;Jee, Bo-Young;Kim, Jin-Woo;Kim, Yi-Cheong;Lee, Eun-Hye
    • Parasites, Hosts and Diseases
    • /
    • v.50 no.2
    • /
    • pp.103-111
    • /
    • 2012
  • Intestinal giant-cystic disease (IGCD) of the Israel carp (Cyprinus carpio nudus) has been recognized as one of the most serious diseases afflicting inland farmed fish in the Republic of Korea, and Thelohanellus kitauei has been identified as the causative agent of the disease. Until now, studies concerning IGCD caused by T. kitauei in the Israel carp have been limited to morphological and histopathological examinations. However, these types of diagnostic examinations are relatively time-consuming, and the infection frequently cannot be detected in its early stages. In this study, we cloned the full-length 18S rRNA gene of T. kitauei isolated from diseased Israel carps, and carried out molecular identification by comparing the sequence with those of other myxosporeans. Moreover, conventional PCR and real-time quantitative PCR (qPCR) using oligonucleotide primers for the amplification of 18S rRNA gene fragment were established for further use as methods for rapid diagnosis of IGCD. Our results demonstrated that both the conventional PCR and real-time quantitative PCR systems applied herein are effective for rapid detection of T. kitauei spores in fish tissues and environmental water.

A Korean patient with Fanconi-Bickel Syndrome Presenting with Transient Neonatal Diabetes Mellitus and Galactosemia : Identification of a Novel Mutation in the GLUT2 Gene

  • Yoo, Han-Wook;Seo, Eul-Ju;Kim, Gu-Hwan
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.1 no.1
    • /
    • pp.23-27
    • /
    • 2001
  • Fanconi-Bickel Syndrome (FBS) is a rare autosomal recessive disorder of carbohydrate metabolism recently demonstrated to be caused by mutations in the GLUT 2 gene for the glucose transporter protein 2 expressed in liver, pancreas, intestine, and kidney. This disease is characterized by hepatorenal glycogen accumulation, both fasting hypoglycemia as well as postprandial hyperglycemia and hyperglactosemia, and generalized proximal renal tubular dysfunctions. We report the first Korean patient with FBS diagnosed based on clinical manifestations and identification of a novel mutation in the GLUT 2 gene. She was initially diagnosed having a neonatal diabetes mellitus due to hyperglycemia and glycosuria at 3 days after birth. In addition, newborn screening for galactosemia revealed hypergalactosemia. Thereafter, she has been managed with lactose free milk, insulin therapy. However, she failed to grow and her liver has been progressively enlarging. Her liver functions were progressively deteriorated with increased prothrombin time. Liver biopsy done at age 9 months indicated micronodular cirrhosis with marked fatty changes. She succubmed to hepatic failiure with pneumonia at 10 months of age. Laboratory tests indicated she had generalized proximal renal tubular dysfuctions; renal tubular acidosis, hypophosphatemic rickets, and generalized aminoaciduria. Given aforementioned findings, the diagnosis of FBS was appreciated at age of 2 months. The DNA sequencing analysis of the GLUT 2 gene using her genomic DNA showed a novel mutation at 5th codon; Lysine5 Stop (K5X).

  • PDF

Association of an Anti-inflammatory Cytokine Gene IL4 Polymorphism with the Risk of Type 2 Diabetes Mellitus in Korean Populations

  • Go, Min-Jin;Min, Hae-Sook;Lee, Jong-Young;Kim, Sung-Soo;Kim, Yeon-Jung
    • Genomics & Informatics
    • /
    • v.9 no.3
    • /
    • pp.114-120
    • /
    • 2011
  • Chronic inflammation has been implicated as one of the important etiological factors in insulin resistance and type 2 diabetes mellitus (T2DM). To investigate the role of anti-inflammatory cytokines in the development of T2DM, we conducted a case-control study to assess the association between IL4/IL4R polymorphisms and disease risk. We firstly identified single nucleotide poly-morphisms (SNP) at IL4 and IL4RA loci by sequencing the loci in Korean participants. Case-control studies were conducted by genotyping the SNPs in 474 T2DM cases and 470 non-diabetic controls recruited from community-based cohorts. Replication of the associated signals was performed in 1,216 cases and 1,352 controls. We assessed effect of IL4 -IL4RA interaction on T2DM using logistic regression method. The functional relevance of the SNP associated with disease risk was determined using a reporter expression assay. We identified a strong association between the IL4 promoter variant rs2243250 and T2DM risk (OR=0.77; 95% CI, 0.67~0.88; p=$1.65{\times}10^{-4}$ in the meta-analysis). The reporter gene expression assay demonstrated that the presence of rs2243250 might affect the gene expression level with ~1.5-fold allele difference. Our findings contribute to the identification of IL4 as a T2D susceptibility locus, further supporting the role of anti-inflammatory cytokines in T2DM disease development.

Co-occurrence Based Drug-disease Relationship Inference with Genes as Mediators (유전자를 중간 매개로 고려한 동시발생 기반의 약물-질병 관계 추론)

  • Shin, Sangwon;Sin, Yeeun;Jang, Giup;Yoo, Youngmi
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.1-9
    • /
    • 2018
  • Drug repositioning is to discover new uses of drugs. Text mining derives knowledge from unstructured text. We propose a method to predict new drug-disease relationships by taking into account the rate of frequency of genes simultaneously measured in disease-gene and gene-drug. Co-occurrence of drug-gene and gene-disease in the biological literature is counted and calculate the rate of the gene for each drug and disease. Weights of drug-disease relationships are calculated using the average of the rates of genes that are measured and used to measure the accuracy for each disease. In measuring drug-disease relationships, a more accurate identification of relationships was shown by measuring the frequency on a sentence and considering multiple relationships than existing method.

Molecular identification and characterization of Lumpy skin disease virus emergence from cattle in the northeastern part of Thailand

  • Seerintra, Tossapol;Saraphol, Bhuripit;Wankaew, Sitthichai;Piratae, Supawadee
    • Journal of Veterinary Science
    • /
    • v.23 no.5
    • /
    • pp.73.1-73.8
    • /
    • 2022
  • Background: Lumpy skin disease (LSD), a disease transmitted by direct and indirect contact with infected cattle, is caused by the Lumpy skin disease virus (LSDV). The disease affects cattle herds in Africa, Europe, and Asia. The clinical signs of LSD range from mild to the appearance of nodules and lesions in the skin leading to severe symptoms that are sometimes fatal with significant livestock economic losses. Objectives: This study aimed to characterize LSDV strains in the blood of infected cattle in Thailand based on the GPCR gene and determine the phylogenetic relationship of LSDV Thailand isolates with published sequences available in the database. Methods: In total, the blood samples of 120 cattle were collected from different farms in four provinces in the northeastern part of Thailand, and the occurrence of LSDV was examined by PCR based on the P32 antigen gene. The genetic diversity of LSDV based on the GPCR gene was analyzed. Results: Polymerase chain reaction assays based on the P32 antigen gene showed that 4.17% (5/120) were positive for LSDV. All positive blood samples were amplified successfully for the GPCR gene. Phylogenetic analysis showed that LSDV Thailand isolates clustered together with LSDVs from China and Russia. Conclusions: The LSD outbreak in Thailand was confirmed, and a phylogenetic tree was constructed to infer the branching pattern of the GPCR gene from the presence of LSDV in Thailand. This is the first report on the molecular characterization of LSDV in cattle in Thailand.

Rapid Identification of Diaporthe citri by Gene Sequence Analysis

  • Zar Zar Soe;Yong Ho Shin;Hyun Su Kang;Mi Jin Kim;Yong Chull Jeun
    • Research in Plant Disease
    • /
    • v.29 no.2
    • /
    • pp.130-136
    • /
    • 2023
  • Citrus melanoses caused by Diaporthe citri, has been one of the serious diseases in many citrus orchards of Jeju Island. To protect melanose in citrus farms, a fast and exact diagnosis method is necessary. In this study, diseased leaves and dieback twigs were collected from a total of 49 farms within March to April in 2022. A total of 465 fungal isolates were obtained from a total of 358 isolated plant samples. Among these fungal isolates, 40 representatives of D. citri isolates which were isolated from 22 twigs and 18 leaves on 23 farms were found based on cultural characteristics on potato dextrose agar and conidial morphology. Additionally, the molecular assay was carried out and compared with those by morphological diagnosis. All isolates were identified as D. citri by analyzing the sequences at the internal transcribed spacer (ITS) rDNA region using primers of ITS1/ITS4 or at β-tubulin using primer Btdcitri-F/R. Therefore, based on the present study, where the results of morphological identification of conidial type were consistent with DNA sequence analysis of certain gene, choosing a suitable method for a fast diagnosis of citrus melanose was suggested.

Identification of potential molecular markers for disease resistance in giant gourami through major histocompatibility complex (MHC) II gene analysis

  • Ikhsan Khasani;Rita Febrianti;Sularto;Wahyu Pamungkas;Keukeu Kaniawati Rosada
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.3
    • /
    • pp.159-170
    • /
    • 2024
  • Research to obtain molecular markers related to the major histocompatibility complex (MHC) gene in both strains of gourami is essential to increase the success of the selection program of disease resistance traits. Using a completely randomized design (CRD), the challenge test consists of four treatments and seven replications. The treatment was Jambi gourami injected with PBS (KJ), Kalimantan gourami injected with PBS (KK), Jambi strain injected with Aeromonas hydrophila (GJ), and Kalimantan strain injected with A. hydrophila (GK). The GJ population was more resistant to A. hydrophila than the GK population. The MHC II gene was detected in both test strains (GJ and GK), both resistant and susceptible fish. However, there were differences in the results of amplifying the MHC II gene in susceptible and resistant fish. Two DNA fragments approximately 400 and 585 bp were detected in the genome of susceptible fish, while in the genome of susceptible fish, only one DNA fragment was detected (400 bp). Therefore, the MHC II gene fragment with a size of about 585 bp can be used as a potential candidate for specific molecular markers to obtain resistance to A. hydrophila bacteria in the giant gourami.

Identification of LAMP2 mutations in early-onset hypertrophic cardiomyopathy by targeted exome sequencing

  • Gill, Inkyu;Kim, Ja Hye;Moon, Jin-Hwa;Kim, Yong Joo;Kim, Nam Su
    • Journal of Genetic Medicine
    • /
    • v.15 no.2
    • /
    • pp.87-91
    • /
    • 2018
  • X-linked dominant mutations in lysosome-associated membrane protein 2 (LAMP2) gene have been shown to be the cause of Danon disease, which is a rare disease associated with clinical triad of cardiomyopathy, skeletal myopathy, and mental retardation. Cardiac involvement is a common manifestation and is the leading cause of death in Danon disease. We report a case of a 24-month-old boy with hemizygous LAMP2 mutation who presented with failure to thrive and early-onset hypertrophic cardiomyopathy. We applied targeted exome sequencing and found a novel hemizygous c.692del variant in exon 5 of the LAMP2 gene, resulting a frameshift mutation p.Thr231Ilefs*11. Our study indicates that target next-generation sequencing can be used as a fast and highly sensitive screening method for inherited cardiomyopathy.

MicroRNAs in Human Diseases: From Autoimmune Diseases to Skin, Psychiatric and Neurodegenerative Diseases

  • Ha, Tai-You
    • IMMUNE NETWORK
    • /
    • v.11 no.5
    • /
    • pp.227-244
    • /
    • 2011
  • MicroRNAs (miRNAs) are small noncoding RNA molecules that negatively regulate gene expression via degradation or translational repression of their target messenger RNAs (mRNAs). Recent studies have clearly demonstrated that miRNAs play critical roles in several biologic processes, including cell cycle, differentiation, cell development, cell growth, and apoptosis and that miRNAs are highly expressed in regulatory T (Treg) cells and a wide range of miRNAs are involved in the regulation of immunity and in the prevention of autoimmunity. It has been increasingly reported that miRNAs are associated with various human diseases like autoimmune disease, skin disease, neurological disease and psychiatric disease. Recently, the identification of miRNAs in skin has added a new dimension in the regulatory network and attracted significant interest in this novel layer of gene regulation. Although miRNA research in the field of dermatology is still relatively new, miRNAs have been the subject of much dermatological interest in skin morphogenesis and in regulating angiogenesis. In addition, miRNAs are moving rapidly center stage as key regulators of neuronal development and function in addition to important contributions to neurodegenerative disorder. Moreover, there is now compelling evidence that dysregulation of miRNA networks is implicated in the development and onset of human neruodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Tourette's syndrome, Down syndrome, depression and schizophrenia. In this review, I briefly summarize the current studies about the roles of miRNAs in various autoimmune diseases, skin diseases, psychoneurological disorders and mental stress.