DOI QR코드

DOI QR Code

Multiplex TaqMan qPCR Assay for Detection, Identification, and Quantification of Three Sclerotinia Species

  • Dong Jae Lee (Department of Biological Science, Kunsan National University) ;
  • Jin A Lee (Department of Biological Science, Kunsan National University) ;
  • Dae-Han Chae (Moghu Research Center Ltd) ;
  • Hwi-Seo Jang (Moghu Research Center Ltd) ;
  • Young-Joon Choi (Department of Biological Science, Kunsan National University) ;
  • Dalsoo Kim (Moghu Research Center Ltd)
  • Received : 2022.08.25
  • Accepted : 2022.09.29
  • Published : 2022.10.31

Abstract

White mold (or Sclerotinia stem rot), caused by Sclerotinia species, is a major air, soil, or seed-transmitted disease affecting numerous crops and wild plants. Microscopic or culture-based methods currently available for their detection and identification are time-consuming, laborious, and often erroneous. Therefore, we developed a multiplex quantitative PCR (qPCR) assay for the discrimination, detection, and quantification of DNA collected from each of the three economically relevant Sclerotinia species, namely, S. sclerotiorum, S. minor, and S. nivalis. TaqMan primer/probe combinations specific for each Sclerotinia species were designed based on the gene sequences encoding aspartyl protease. High specificity and sensitivity of each probe were confirmed for sclerotium and soil samples, as well as pure cultures, using simplex and multiplex qPCRs. This multiplex assay could be helpful in detecting and quantifying specific species of Sclerotinia, and therefore, may be valuable for disease diagnosis, forecasting, and management.

Keywords

Acknowledgement

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through Agricultural Machinery/Equipment Localization Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) [grant number 321056-05].

References

  1. Fungal Databases [database on the Internet]. US National Fungus Collections, ARS, USDA. 2022. [cited July 28, 2022] Available from: https://nt.arsgrin.gov/fungaldatabases/
  2. Abawi G, Grogan R. Epidemiology of diseases caused by Sclerotinia species. Phytopathology. 1979;69(8):899-904. https://doi.org/10.1094/Phyto-69-899
  3. Adams P, Ayers W. Ecology of Sclerotinia species. Phytopathology. 1979;69(8):896-899. https://doi.org/10.1094/Phyto-69-896
  4. Steadman JR. White mold: a serious yield-limiting disease of bean. Plant Dis. 1983;67(4):346-350. https://doi.org/10.1094/PD-67-346
  5. Bardin SD, Huang HC. Research on biology and control of Sclerotinia diseases in Canada1. Can J Plant Pathol. 2001;23(1):88-98. https://doi.org/10.1080/07060660109506914
  6. Cruickshank RH. Distinction between Sclerotinia species by their pectic zymograms. Trans Br Mycol Soc. 1983;80(1):117-119. https://doi.org/10.1016/S0007-1536(83)80171-5
  7. Freeman J, Ward E, Calderon C, et al. A polymerase chain reaction (PCR) assay for the detection of inoculum of Sclerotinia sclerotiorum. Eur J Plant Pathol. 2002;108(9):877-886. https://doi.org/10.1023/A:1021216720024
  8. Staats M, van Baarlen P, van Kan JAL. Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity. Mol Biol Evol. 2005;22(2):333-346.
  9. Hirschhauser S, Frohlich J. Multiplex PCR for species discrimination of Sclerotiniaceae by novel laccase introns. Int J Food Microbiol. 2007;118(2):151-157. https://doi.org/10.1016/j.ijfoodmicro.2007.07.005
  10. Andrew M, Barua R, Short SM, et al. Evidence for a common toolbox based on necrotrophy in a fungal lineage spanning necrotrophs, biotrophs, endophytes, host generalists and specialists. PLoS One. 2012;7(1):e29943.
  11. Poussereau N, Gente S, Rascle C, et al. aspS encoding an unusual aspartyl protease from Sclerotinia sclerotiorum is expressed during phytopathogenesis. FEMS Microbiol Lett. 2001;194(1):27-32. https://doi.org/10.1111/j.1574-6968.2001.tb09441.x
  12. Njambere EN, Vandemark G, Chen W. Development and characterization of microsatellite markers of the fungal plant pathogen Sclerotinia trifoliorum. Genome. 2010;53(6):494-500. https://doi.org/10.1139/G10-019
  13. Andrew M, Kohn LM. Single nucleotide polymorphism-based diagnostic system for crop-associated Sclerotinia species. Appl Environ Microbiol. 2009;75(17):5600-5606. https://doi.org/10.1128/AEM.02761-08
  14. Abd-Elmagid A, Garrido PA, Hunger R, et al. Discriminatory simplex and multiplex PCR for four species of the genus Sclerotinia. J Microbiol Methods. 2013;92(3):293-300.
  15. Yin Y, Ding L, Liu X, et al. Detection of Sclerotinia sclerotiorum in planta by a real-time PCR assay. J Phytopathol. 2009;157(7-8):465-469. https://doi.org/10.1111/j.1439-0434.2009.01543.x
  16. Rogers SL, Atkins SD, West JS. Detection and quantification of airborne inoculum of Sclerotinia sclerotiorum using quantitative PCR. Plant Pathol. 2009;58(2):324-331. https://doi.org/10.1111/j.1365-3059.2008.01945.x
  17. KSPP. List of plant diseases in Korea. Korea: The Korean Society of Plant Pathology; 2022.
  18. Kwon JH, Lee HS, Lee YH, et al. Sclerotinia rot of Astragalus sinicus caused by Sclerotinia trifoliorum. Res Plant Dis 2010;16(1):90-93. https://doi.org/10.5423/RPD.2010.16.1.090
  19. White T, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, et al. editors. PCR protocols: a guide to methods and applications. New York (NY): Academic Press; 1990. p. 315-322.
  20. Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol. 1995;61(4):1323-1330.
  21. Vleugels T, De Riek J, Heungens K, et al. Genetic diversity and population structure of Sclerotinia species from European red clover crops. J Plant Pathol. 2012;94(3):493-504.
  22. Yang D, Luo T, Wei J, et al. High-quality genome resource of the phytopathogenic fungus Sclerotinia minor lc41, the causal agent of Sclerotinia blight on lettuce in China. Plant Dis. 2022;106(3):1042-1044. https://doi.org/10.1094/PDIS-10-21-2150-A
  23. Untergasser A, Cutcutache I, Koressaar T, et al. Primer3-new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115-e115. https://doi.org/10.1093/nar/gks596
  24. Qin L, Fu Y, Xie J, et al. A nested-PCR method for rapid detection of Sclerotinia sclerotiorum on petals of oilseed rape (Brassica napus). Plant Pathol. 2011;60(2):271-277.
  25. Reich JD, Alexander TW, Chatterton S. A multiplex PCR assay for the detection and quantification of Sclerotinia sclerotiorum and Botrytis cinerea. Lett Appl Microbiol. 2016;62(5):379-385. https://doi.org/10.1111/lam.12566