• Title/Summary/Keyword: Disease gene identification

Search Result 244, Processing Time 0.026 seconds

Molecular identification of fruit bats, natural host of Nipah virus in Bangladesh, based on DNA barcode

  • Md. Maharub Hossain Fahim;Walid Hassan;Afia Afsin;Md. Mahfuzur Rahman;Md. Tanvir Rahman;Sang Jin Lim;Yeonsu Oh;Yung Chul Park;Hossain Md. Faruquee;Md. Mafizur Rahman
    • Journal of Ecology and Environment
    • /
    • v.48 no.2
    • /
    • pp.163-172
    • /
    • 2024
  • Background: Fruit bats are natural carriers of Nipah virus (NiV). The primary objective of this study is to identify potential reservoir species in a selected geographic regions. It is necessary to determine an accurate species identification of the associated reservoir bat species distributed in a specific region. Results: In this study, we collected 20 different bat specimens from the NiV-prone area of the Kushtia district. Among these, 14 were tissue samples (BT-1-14) and six were fecal samples (BF-1-6). We used the mitochondrial gene cytochrome b, one of the most abundant and frequently used genetic markers, for polymerase chain reaction amplification and sequencing. Out of the 20 samples, 12 tissue samples and 2 fecal samples were successfully amplified and sequenced. However, two tissue samples and four fecal samples yielded chimeric sequences, rendering them unsuitable for annotation. The sequences of the successfully amplified samples were compared to those deposited in the National Center for Biotechnology Information database using basic local alignment search tool to identify the bat specimen collected. The study identified six different bat species using both morphological and genetic data, which may carriers of the NiV. Conclusions: Our results suggest that additional research should be conducted to gather more information on fruit bats from different localities across the country. The study contributes to the establishment of appropriate measures for NiV carrying disease control and management.

Identification and molecular characterization of a rabbit hemorrhagic disease virus variant (KV0801) isolated in Korea

  • Yang, Dong-Kun;Kim, Byoung-Han;Lee, Kyung-Woo;Kim, Ji-Yeon;Kim, Hee-Jin;Choi, Sung-Suk;Chun, Ji-Eun;Son, Seong-Wan
    • Korean Journal of Veterinary Research
    • /
    • v.49 no.3
    • /
    • pp.207-213
    • /
    • 2009
  • Rabbit hemorrhagic disease (RHD) is caused by RHD virus (RHDV) and is one of the most fatal diseases of rabbits. Acute death of rabbits occurred in a farm located in the Gyeonggi province of South Korea. The virus was isolated and confirmed as RHDV based on reverse transcription polymerase chain reaction and hemagglutination assay (HA), and the isolate was designated as KV0801. The nucleotide sequence of the complete VP60 gene of KV0801 was determined and the corresponding amino acid sequence was deduced. Molecular analysis showed that the KV0801 isolate can be classified as a pandemic antigenic variant strain, RHDVa. The VP60 nucleotide sequence and deduced amino acid homology between KV0801 and other Korean isolate, RHF89, which was isolated in 1988, were 92.1 and 94.3%, respectively. The pathogenicity of the KV0801 isolate at an HA titer ranging from 16,384 to 0.16 HA units was evaluated in five-month-old SFP rabbits. The rabbits inoculated with KV0801 isolate containing more than 1.63 HA units died within six days of inoculation. These results suggest that a highly pathogenic RHDVa is circulating in the rabbit populations of Korea.

Sphingosine 1-Phosphate Receptor Modulators and Drug Discovery

  • Park, Soo-Jin;Im, Dong-Soon
    • Biomolecules & Therapeutics
    • /
    • v.25 no.1
    • /
    • pp.80-90
    • /
    • 2017
  • Initial discovery on sphingosine 1-phosphate (S1P) as an intracellular second messenger was faced unexpectedly with roles of S1P as a first messenger, which subsequently resulted in cloning of its G protein-coupled receptors, $S1P_{1-5}$. The molecular identification of S1P receptors opened up a new avenue for pathophysiological research on this lipid mediator. Cellular and molecular in vitro studies and in vivo studies on gene deficient mice have elucidated cellular signaling pathways and the pathophysiological meanings of S1P receptors. Another unexpected finding that fingolimod (FTY720) modulates S1P receptors accelerated drug discovery in this field. Fingolimod was approved as a first-in-class, orally active drug for relapsing multiple sclerosis in 2010, and its applications in other disease conditions are currently under clinical trials. In addition, more selective S1P receptor modulators with better pharmacokinetic profiles and fewer side effects are under development. Some of them are being clinically tested in the contexts of multiple sclerosis and other autoimmune and inflammatory disorders, such as, psoriasis, Crohn's disease, ulcerative colitis, polymyositis, dermatomyositis, liver failure, renal failure, acute stroke, and transplant rejection. In this review, the authors discuss the state of the art regarding the status of drug discovery efforts targeting S1P receptors and place emphasis on potential clinical applications.

Neopestalotiopsis Leaf Blight, an Emerging Concern on Leatherleaf Fern in Indonesia

  • Ani Widiastuti;Indah Khofifah Aruan;Alvina Clara Giovanni;Barokati Tsaniyah;Tri Joko;Achmadi Priyatmojo
    • Research in Plant Disease
    • /
    • v.30 no.1
    • /
    • pp.82-87
    • /
    • 2024
  • Leatherleaf fern (Rumohra adiantiformis) is an important ornamental plant in Indonesia and global. Green fern leaves with bold dark green color with long shelf-life, attract florists as decoration. Indonesia is one important leatherleaf fern exporters, however currently an outbreak of leaf blight decreased production significantly. Initial symptom was reddish brown spots from edge of leaf, which was gradually followed by dark-brown necrotic lesions causing leaf blight and dried. This is a study to do Koch-Postulate approach and molecular identification, to identify the pathogen of the "new emerging disease" reported. Based on multigene analysis using primers from ITS, β-tub and tef1-α gene markers, the pathogen was identified as Neopestalotiopsis sp. All sequences have been deposited in GenBank with accession number of OR905551 (ITS), OR899817 (ßtubulin) and OR899816 (TEF). This Neopestalotiopsis leaf blight causes an emerging concern in leatherleaf fern in Indonesia and global biosecurity because it infected an export commodity.

First Report of Pectobacterium aroidearum Causing Soft Rot on Ficus carica in Korea

  • Kyoung-Taek Park;Leonid N. Ten;Soo-Min Hong;Song-Woon Nam;Chang-Gi Back;Seung-Yeol Lee;Hee-Young Jung
    • Research in Plant Disease
    • /
    • v.30 no.1
    • /
    • pp.88-94
    • /
    • 2024
  • In July 2021, symptoms of soft rot were observed on the stems of Ficus carica in Yeongam, Jeollanamdo, Korea. To accurately diagnose the cause, infected stem was collected and bacterial strain was isolated. Among these, the pathogenic strain KNUB-08-21 was identified as Pectobacterium aroidearum through 16S rRNA gene sequencing and phylogenetic analysis based on the concatenated sequences of the dnaX, leuS, and recA genes. The affiliation of the isolate with this bacterial species was also confirmed by its biochemical characteristics obtained using API ID 32 GN system. Artificial inoculation confirmed the strain's pathogenicity in figs, causing significant damage to both stems and fruits. To our knowledge, this is the first report of P. aroidearum causing soft rot disease in F. carica in Korea.

Identification of interacting proteins of retinoid-related orphan nuclear receptor gamma in HepG2 cells

  • Huang, Ze-Min;Wu, Jun;Jia, Zheng-Cai;Tian, Yi;Tang, Jun;Tang, Yan;Wang, Ying;Wu, Yu-Zhang;Ni, Bing
    • BMB Reports
    • /
    • v.45 no.6
    • /
    • pp.331-336
    • /
    • 2012
  • The retinoid-related orphan nuclear receptor gamma ($ROR{\gamma}$) plays critical roles in regulation of development, immunity and metabolism. As transcription factor usually forms a protein complex to function, thus capturing and dissecting of the $ROR{\gamma}$ protein complex will be helpful for exploring the mechanisms underlying those functions. After construction of the recombinant tandem affinity purification (TAP) plasmid, pMSCVpuro $ROR{\gamma}$-CTAP(SG), the nuclear localization of $ROR{\gamma}$-CTAP(SG) fusion protein was verified. Following isolation of $ROR{\gamma}$ protein complex by TAP strategy, seven candidate interacting proteins were identified. Finally, the heat shock protein 90 (HSP90) and receptor-interacting protein 140 (RIP140) were confirmed to interplay with $ROR{\gamma}$ by co-immunoprecipitation. Interference of HSP90 or/and RIP140 genes resulted in dramatically decreased expression of CYP2C8 gene, the $ROR{\gamma}$ target gene. Data from this study demonstrate that HSP90 and RIP140 proteins interact with $ROR{\gamma}$ protein in a complex format and function as co-activators in the $ROR{\gamma}$-mediated regulatory processes of HepG2 cells.

Neurotoxin-Induced Pathway Perturbation in Human Neuroblastoma SH-EP Cells

  • Do, Jin Hwan
    • Molecules and Cells
    • /
    • v.37 no.9
    • /
    • pp.672-684
    • /
    • 2014
  • The exact causes of cell death in Parkinson's disease (PD) remain unknown despite extensive studies on PD.The identification of signaling and metabolic pathways involved in PD might provide insight into the molecular mechanisms underlying PD. The neurotoxin 1-methyl-4-phenylpyridinium ($MPP^+$) induces cellular changes characteristic of PD, and $MPP^+$-based models have been extensively used for PD studies. In this study, pathways that were significantly perturbed in $MPP^+$-treated human neuroblastoma SH-EP cells were identified from genome-wide gene expression data for five time points (1.5, 3, 9, 12, and 24 h) after treatment. The mitogen-activated protein kinase (MAPK) signaling pathway and endoplasmic reticulum (ER) protein processing pathway showed significant perturbation at all time points. Perturbation of each of these pathways resulted in the common outcome of upregulation of DNA-damage-inducible transcript 3 (DDIT3). Genes involved in ER protein processing pathway included ubiquitin ligase complex genes and ER-associated degradation (ERAD)-related genes. Additionally, overexpression of DDIT3 might induce oxidative stress via glutathione depletion as a result of overexpression of CHAC1. This study suggests that upregulation of DDIT3 caused by perturbation of the MAPK signaling pathway and ER protein processing pathway might play a key role in $MPP^+$-induced neuronal cell death. Moreover, the toxicity signal of $MPP^+$ resulting from mitochondrial dysfunction through inhibition of complex I of the electron transport chain might feed back to the mitochondria via ER stress. This positive feedback could contribute to amplification of the death signal induced by $MPP^+$.

Identification and Characterization of Tobamoviruses Isolated from Commercial Pepper Seeds (시판 고추 종자에서 분리한 Tobamovirus의 동정 및 특성 조사)

  • 한정헌;손성한;나용준
    • Research in Plant Disease
    • /
    • v.7 no.3
    • /
    • pp.164-169
    • /
    • 2001
  • Two Tobamoviruses showing different local lesion types on Nicotiana glutinosa was isolated from commercial pepper seeds. These viruses were designated Tobamovirus-6 (T-6) and Tobamovirus-19 (T-19). The biological and serological assays revealed that T-6 and T-19 were closely related to Pepper mild mottle virus (PMMoV) and Tomato mosaic virus (ToMV), respectively, The isolates also had low similarity in the array of viral coat protein gene sequences, of which T-19 was most identical to known strains of ToMV, while T-6 was closely related to PMMoV.

  • PDF

Post-harvest Green Pea Pod Rot Caused by Sclerotinia sclerotiorum in Korea

  • Aktaruzzaman, Md.;Afroz, Tania;Kim, Byung-Sup
    • Research in Plant Disease
    • /
    • v.28 no.1
    • /
    • pp.46-50
    • /
    • 2022
  • In June 2017, in Gangneung, Gangwon Province, South Korea, green pea pods exhibited post-harvest rot symptoms. The fungus was isolated from infected pea pods and cultured on potato dextrose agar for identification. The morphological characteristics were examined, sequences of the internal transcribed spacer region and the β-tubulin (βtub) gene were analyzed, and the pathogenicity was confirmed according to Koch's postulates. The morphology, phylogenetic analysis, and pathogenicity tests confirmed that Sclerotinia sclerotiorum was the causal agent. This study reports the first case of post-harvest green pea pod rot caused by S. sclerotiorum in Korea.

Screening of Selected Korean Sweetpotato (Ipomoea batatas) Varieties for Fusarium Storage Root Rot (Fusarium solani) Resistance

  • Lee, Seung-yong;Paul, Narayan Chandra;Park, Won;Yu, Gyeong-Dan;Park, Jin-Cheon;Chung, Mi-Nam;Nam, Sang-Sik;Han, Seon-Kyeong;Lee, Hyeong-Un;Goh, San;Lee, Im Been;Yang, Jung-Wook
    • The Korean Journal of Mycology
    • /
    • v.47 no.4
    • /
    • pp.407-416
    • /
    • 2019
  • A common post-harvest disease of sweetpotato tuber is root rot caused by Fusarium solani in Korea as well as the other countries. Storage root rot disease was monitored earlier on sweetpotato (Ipomoea batatas) in storehouses of different locations in Korea. In the present study, an isolate SPL16124 was choosen and collected from Sweetpotato Research Lab., Bioenergy Crop Research Institute, NICS, Muan, Korea, and confirmed the identification as Fusarium solani by conidial and molecular phylogenetic analysis (internal transcribed spacer ITS and translation elongation factor EF 1-α gene sequences). The isolate was cultured on potato dextrose agar, and conidiation was induced. The fungus was screened for Fusarium root rot on tuber of 14 different varieties. Among the tested variety, Yenjami, Singeonmi, Daeyumi, and Sinjami showed resistant to root rot disease. Additionally, the pathogen was tested for pathogenicity on stalks of these varieties. No symptom was observed on the stalk, and it was confirmed that the disease is tissue specific.