• Title/Summary/Keyword: Discriminant model

Search Result 520, Processing Time 0.026 seconds

Two Dimensional Slow Feature Discriminant Analysis via L2,1 Norm Minimization for Feature Extraction

  • Gu, Xingjian;Shu, Xiangbo;Ren, Shougang;Xu, Huanliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3194-3216
    • /
    • 2018
  • Slow Feature Discriminant Analysis (SFDA) is a supervised feature extraction method inspired by biological mechanism. In this paper, a novel method called Two Dimensional Slow Feature Discriminant Analysis via $L_{2,1}$ norm minimization ($2DSFDA-L_{2,1}$) is proposed. $2DSFDA-L_{2,1}$ integrates $L_{2,1}$ norm regularization and 2D statically uncorrelated constraint to extract discriminant feature. First, $L_{2,1}$ norm regularization can promote the projection matrix row-sparsity, which makes the feature selection and subspace learning simultaneously. Second, uncorrelated features of minimum redundancy are effective for classification. We define 2D statistically uncorrelated model that each row (or column) are independent. Third, we provide a feasible solution by transforming the proposed $L_{2,1}$ nonlinear model into a linear regression type. Additionally, $2DSFDA-L_{2,1}$ is extended to a bilateral projection version called $BSFDA-L_{2,1}$. The advantage of $BSFDA-L_{2,1}$ is that an image can be represented with much less coefficients. Experimental results on three face databases demonstrate that the proposed $2DSFDA-L_{2,1}/BSFDA-L_{2,1}$ can obtain competitive performance.

Discriminant Modeling for Pattern Identification Using the Korean Standard PI for Stroke-III (한국형 중풍변증 표준 III을 이용한 변증진단 판별모형)

  • Kang, Byoung-Kab;Ko, Mi-Mi;Lee, Ju-Ah;Park, Tae-Yong;Park, Yong-Gyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.6
    • /
    • pp.1113-1118
    • /
    • 2011
  • In this paper, when a physician make a diagnosis of the pattern identification (PI) in Korean stroke patients, the development methods of the PI classification function is considered by diagnostic questionnaire of the PI for stroke patients. Clinical data collected from 1,502 stroke patients who was identically diagnosed for the PI subtypes diagnosed by two physicians with more than 3 years experiences in 13 oriental medical hospitals. In order to develop the classification function into PI using Korean Stroke Syndrome Differentiation Standard was consist of the 44 items (Fire heat(19), Qi deficiency(11), Yin deficiency(7), Dampness-phlegm(7)). Using the 44 items, we took diagnostic and prediction accuracy rate through of discriminant model. The overall diagnostic and prediction accuracy rate of the PI subtypes for discriminant model was 74.37%, 70.88% respectively.

Comparisons of Discriminant Analysis Model and Generalized Logit Model in Stroke Patten Identifications Classification (중풍변증분류에 사용되는 판별분석모형과 일반화로짓모형의 비교)

  • Kang, Byoung-Kab;Lee, Ju-Ah;Ko, Mi-Mi;Moon, Tae-Woong;Bang, Ok-Sun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.318-321
    • /
    • 2011
  • In this study, when a physician make a diagnosis of the Pattern Identifications(PIs) of stroke patients, the development methods of the PIs classification function is considered by diagnostic questionnaire of the PIs for stroke patients. Clinical data collected from 1,502 stroke patients who was identically diagnosed for the PIs subtypes diagnosed by two clinical experts with more than 3 years experiences in 13 oriental medical hospitals. In order to develop the classification function into PIs using the 44 items-Fire&heat(19), Qi-deficiency(11), Yin-deficiency(7), Dampness phlegm(7)- of them was significant statistically by univariate analysis in 61 questionnaires totally, we make some comparisons of the results of discriminant analysis model and generalized logit model. The overall diagnostic accuracy rate of the PIs subtypes for discriminant model(74.37%) was higher than 3% of generalized logit model(70.09%).

Telephone Digit Speech Recognition using Discriminant Learning (Discriminant 학습을 이용한 전화 숫자음 인식)

  • 한문성;최완수;권현직
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.3
    • /
    • pp.16-20
    • /
    • 2000
  • Most of speech recognition systems are using Hidden Markov Model based on statistical modelling frequently. In Korean isolated telephone digit speech recognition, high recognition rate is gained by using HMM if many training data are given. But in Korean continuous telephone digit speech recognition, HMM has some limitations for similar telephone digits. In this paper we suggest a way to overcome some limitations of HMM by using discriminant learning based on minimal classification error criterion in Korean continuous telephone digit speech recognition. The experimental results show our method has high recognition rate for similar telephone digits.

  • PDF

Discriminant Model for Pattern Identifications in Stroke Patients Based on Pattern Diagnosis Processed by Oriental Physicians (전문가 변증과정을 반영한 중풍 변증 판별모형)

  • Lee, Jung-Sup;Kim, So-Yeon;Kang, Byoung-Kab;Ko, Mi-Mi;Kim, Jeong-Cheol;Oh, Dal-Seok;Kim, No-Soo;Choi, Sun-Mi;Bang, Ok-Sun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.6
    • /
    • pp.1460-1464
    • /
    • 2009
  • In spite of many studies on statistical model for pattern identifications (PIs), little attention has been paid to the complexity of pattern diagnosis processed by oriental physicians. The aim of this study is to develop a statistical diagnostic model which discriminates four PIs using multiple indicators in stroke. Clinical data were collected from 981 stroke patients and 516 data of which PIs were agreed by two independent physicians were included. Discriminant analysis was carried out using clinical indicators such as symptoms and signs which referred to pattern diagnosis, and applied to validation samples which contained all symptoms and signs manifested. Four Fischer's linear discriminant models were derived and their accuracy and prediction rates were 93.2% and 80.43%, respectively. It is important to consider the pattern diagnosis processed by oriental physicians in developing statistical model for PIs. The discriminant model developed in this study using multiple indicators is valid, and can be used in the clinical fields.

An Adaptive Face Recognition System Based on a Novel Incremental Kernel Nonparametric Discriminant Analysis

  • SOULA, Arbia;SAID, Salma BEN;KSANTINI, Riadh;LACHIRI, Zied
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2129-2147
    • /
    • 2019
  • This paper introduces an adaptive face recognition method based on a Novel Incremental Kernel Nonparametric Discriminant Analysis (IKNDA) that is able to learn through time. More precisely, the IKNDA has the advantage of incrementally reducing data dimension, in a discriminative manner, as new samples are added asynchronously. Thus, it handles dynamic and large data in a better way. In order to perform face recognition effectively, we combine the Gabor features and the ordinal measures to extract the facial features that are coded across local parts, as visual primitives. The variegated ordinal measures are extraught from Gabor filtering responses. Then, the histogram of these primitives, across a variety of facial zones, is intermingled to procure a feature vector. This latter's dimension is slimmed down using PCA. Finally, the latter is treated as a facial vector input for the advanced IKNDA. A comparative evaluation of the IKNDA is performed for face recognition, besides, for other classification endeavors, in a decontextualized evaluation schemes. In such a scheme, we compare the IKNDA model to some relevant state-of-the-art incremental and batch discriminant models. Experimental results show that the IKNDA outperforms these discriminant models and is better tool to improve face recognition performance.

Emotion Recognition Method Using FLD and Staged Classification Based on Profile Data (프로파일기반의 FLD와 단계적 분류를 이용한 감성 인식 기법)

  • Kim, Jae-Hyup;Oh, Na-Rae;Jun, Gab-Song;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.6
    • /
    • pp.35-46
    • /
    • 2011
  • In this paper, we proposed the method of emotion recognition using staged classification model and Fisher's linear discriminant. By organizing the staged classification model, the proposed method improves the classification rate on the Fisher's feature space with high complexity. The staged classification model is achieved by the successive combining of binary classification model which has simple structure and high performance. On each stage, it forms Fisher's linear discriminant according to the two groups which contain each emotion class, and generates the binary classification model by using Adaboost method on the Fisher's space. Whole learning process is repeatedly performed until all the separations of emotion classes are finished. In experimental results, the proposed method provides about 72% classification rate on 8 classes of emotion and about 93% classification rate on specific 3 classes of emotion.

School-Building Remodelling Model using Discriminant Analysis - A Case Study for Class Rooms in School Building - (학교건물의 노후화에 따르는 개축 판정에 관한 모델의 정립)

  • Min, Chang-Kee
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.4 no.4
    • /
    • pp.29-41
    • /
    • 1997
  • The objective of this paper is to construct a model to be used in deciding whether to repair or rebuild school buildings is depending on their ages and other factors. The theme of this paper is the age is the main variable but other factors such as floor, innerwall, ceiling, door, inner window of the class room, outer window of the class room, inner window of the corridor, outer window of the corridor, middle window between the classroom and the corridor, light, heater, speaker, fire protection sensor, TV monitor, and telephone status would influence the final decisions. This paper employs an experimental case study method. Using the stepwise, statistical, classification method commonly used in discriminant analysis, it evaluates 12,766 rooms of 87 different high schools in Seoul. The result of this study indicates that some critical variables influencing the final decisions are the status of TV monitor, middle window between the classroom and the corridor, light, inner window of the corridor, fire protection sensor, innerwall, speaker utensil, outer window of the class room, and door of the class room. This paper also suggests a linear discriminant function will be used for this kind of studies. Finally the paper recommends policies with respect to the variables and discriminant functions evaluated.

  • PDF

Discriminant Analysis of Binary Data with Multinomial Distribution by Using the Iterative Cross Entropy Minimization Estimation

  • Lee Jung Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.125-137
    • /
    • 2005
  • Many discriminant analysis models for binary data have been used in real applications, but none of the classification models dominates in all varying circumstances(Asparoukhov & Krzanowski(2001)). Lee and Hwang (2003) proposed a new classification model by using multinomial distribution with the maximum entropy estimation method. The model showed some promising results in case of small number of variables, but its performance was not satisfactory for large number of variables. This paper explores to use the iterative cross entropy minimization estimation method in replace of the maximum entropy estimation. Simulation experiments show that this method can compete with other well known existing classification models.

Development of Discriminant Model of PIH Pregnant using Decision Tree

  • Park, Young-Sun;Choi, Hang-Suk;Lee, Young-Koun;Cha, Kyung-Joon;Lee, Sung-Hoon;Park, Moon-Il
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2004.04a
    • /
    • pp.141-149
    • /
    • 2004
  • The various methods have been studied to develop discriminant model for Pregnancy Induced Hypertension(PIH) as high risk pregnant. In this study, we adapt the approximate entropy which is the non-linear chaotic measuring method. Then, we develop the system to discriminant PIH pregnant using QUEST with S-PLUS.

  • PDF