• Title/Summary/Keyword: Discrete-time state equation

Search Result 53, Processing Time 0.024 seconds

Continuous Time and Discrete Time State Equation Analysis about Electrical Equivalent Circuit Model for Lithium-Ion Battery (리튬 이온 전지의 전기적 등가 회로에 관한 연속시간 및 이산시간 상태방정식 연구)

  • Han, Seungyun;Park, Jinhyeong;Park, Seongyun;Kim, Seungwoo;Lee, Pyeong-Yeon;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.303-310
    • /
    • 2020
  • Estimating the accurate internal state of lithium ion batteries to increase their safety and efficiency is crucial. Various algorithms are used to estimate the internal state of a lithium ion battery, such as the extended Kalman filter and sliding mode observer. A state-space model is essential in using algorithms to estimate the internal state of a battery. Two principal methods are used to express the state-space model, namely, continuous time and discrete time. In this work, the extended Kalman filter is employed to estimate the internal state of a battery. Moreover, this work presents and analyzes the estimation performance of algorithms consisting of a continuous time state-space model and a discrete time state-space model through static and dynamic profiles.

Necessary and Sufficient Stability Condition of Discrete State Delay Systems

  • Suh, Young-Soo;Ro, Young-Shick;Kang, Hee-Jun;Lee, Hong-Hee
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.501-508
    • /
    • 2004
  • A new method to solve a Lyapunov equation for a discrete delay system is proposed. Using this method, a Lyapunov equation can be solved from a simple linear equation and N-th power of a constant matrix, where N is the state delay. Combining a Lyapunov equation and frequency domain stability, a new stability condition is proposed for a discrete state delay system whose state delay is not exactly known but only known to lie in a certain interval.

The Discrete-Time $H_2$/$H_{\infty}$ Control Synthesis : State Feedback Case

  • Bambang, Riyanto;Shimemura, Etsujiro;Uchida, Kenko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.858-863
    • /
    • 1990
  • A synthesis of feedback control-law with combined H$_{2}$/H$_{\infty}$ perfoemance criteria is proposed for discrete-time systems, under the assumption that the state is available for feedback. An auxiliary minimization problem is defined to enforce the H$_{\infty}$ disturbance attenuation constrain while minimizing the H$_{2}$ performance bound. The design equation is presented in terms of a modified Riccati equation which leads to the standard LQ solution when the H$_{\infty}$ constraint is completely relaxed. The results of the paper clarity the correspondences between H$_{2}$/H$_{\infty}$ results in discrete-time systems and their continuous-time counter-parts.rts.

  • PDF

Hierarchical optimisation for large scale discrete-time systems using extended interaction prediction method (확장된 상호작용 예측방법을 이용한 대규모 이산시간 시스템의 계층적 최적제어)

  • 정희태;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.223-227
    • /
    • 1987
  • This paper presents the extended interaction prediction method for large scale discrete-time systems with interconnected state and control. Feedback gain is obtained from decentralized calculation without solving Riccati equation. Hence, Computer storage and calculation time is reduced.

  • PDF

Analysis of PID Control for Microprocessor-based Current Source Inverter-Induction Motor System (마이크로프로세서에 의한 전류형 인버어터 - 유도전동기의 PID제어시스템에 대한 해석)

  • 박민호;전태원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.7
    • /
    • pp.283-288
    • /
    • 1985
  • This paper is concerned with the analysis of microprocessor-based PID control for the current source inverter-induction motor derive system. A linearized dynamic model of the motor is derived and is converted into the discrete-time model. With the equation, the overall system including the feedback loops is formulated into a single discrete-time state equation. The stability regions are determined at various values of controller gains. The transient responses of the motor speed are simulated by digital computer and are verified by laboratory experiments.

  • PDF

Robust stabilization of linear discrete time systems with uncertain dynamics (불확실성이 있는 이산 시간 시스템의 강인 제어기 설계)

  • 이재원;이준화;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.742-746
    • /
    • 1992
  • This paper proposes a new linear robust state feedback controller for the linear discrete time systems which have uncertainties in the state and input matrices. The uncertainties need not satisfy the matching conditions, but only their bounds are needed to be known. The proposed controller is derived from the linear quadratic game problem, which solution is obtained via the modified algebraic Riccati equation. The controller guarantees the robust performance bound. The bound of the solution and the condition of the uncertainties, which can stabilize the uncertain system are explored.

  • PDF

Stability Bounds of Unstructured and Time-Varying Delayed State Uncertainties for Discrete Interval Time-Varying System (이산 시변 구간 시스템의 비구조화된 불확실성과 시변 지연시간 상태변수 불확실성의 안정범위)

  • Hyung-seok Han
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.871-876
    • /
    • 2023
  • In this paper, we deal with the stable conditions when two uncertainties exist simultaneously in a linear discrete time-varying interval system with time-varying delay time. The interval system is a system in which system matrices are given in the form of an interval matrix, and this paper targets the system in which the delay time of these interval system matrices and state variables is time-varying. We propose the system stability condition when there is simultaneous unstructured uncertainty that includes nonlinearity and only its magnitude and uncertainty in the system matrix of delayed state variables. The stable bounds for two types of uncertainty are derived as an analytical equation. The proposed stability condition and bounds can include previous stability condition for various linear discrete systems, and the values such as time-varying delay time variation size, uncertainty size, and range of interval matrix are all included in the conditional equation. The new bounds of stability are compared with previous results through numerical example, and its effectiveness and excellence are verified.

Multirate LQG Control Based on the State Expansion (상태 공간 확장에 의한 멀티레이트 LQG 제어)

  • 이진우;오준호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.131-138
    • /
    • 1999
  • In discrete-time controlled system, sampling time is one of the critical parameters for control performance. It is useful to employ different sampling rates into the system considering the feasibility of measuring system or actuating system. The systems with the different sampling rates in their input and output channels are named multirate system. Even though the original continuous-time system is time-invariant, it is realized as time-varying state equation depending on multirate sampling mechanism. By means of the augmentation of the inputs and the outputs over one Period, the time-varying system equation can be constructed into the time-invariant equation. In this paper, an alternative time-invariant model is proposed, the design method and the stability of the LQG (Linear Quadratic Gaussian) control scheme for the realization are presented. The realization is flexible to construct to the sampling rate variations, the closed-loop system is shown to be asymptotically stable even in the inter-sampling intervals and it has smaller computation in on-line control loop than the previous time-invariant realizations.

  • PDF

A Study on Discrete-Continuous Modeling Methodology for Supply Chain Simulation (공급사슬시뮬레이션을 위한 이산-연속 모델링 방법에 관한 연구)

  • 김서진;이영해
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2000.11a
    • /
    • pp.142-149
    • /
    • 2000
  • Most of supply chain simulation models have been developed on the basis of discrete-event simulation. Since supply chain systems are neither completely discrete nor continuous, the need of constructing a model with aspects of both discrete-event simulation and continuous is provoked, resulting in a combined discrete-continuous simulation. Continuous simulation concerns the modeling over time of a system by a representation in which the state variables change continuously with respect to time. In this paper, an architecture of combined modeling for supply chain simulation is proposed, which presents the equation of continuous part in supply chain and how these equations are used supply chain simulation models. A simple supply chain model is demonstrated the possibility and the capability of this approach.

  • PDF

A new scheme for discrete implicit adaptive observer and controller (이산형 적응관측자 및 제어기의 새로운 구성)

  • 고명삼;허욱열
    • 전기의세계
    • /
    • v.30 no.12
    • /
    • pp.822-831
    • /
    • 1981
  • Many different schemes of the adaptive observer and controller have been developed for both continuous and discrete systems. In this paper we have presented a new scheme of the reduced order adaptive observer for the single input discrete linear time invariant plant. The output equation of the plant, is transformed into the bilinear form in terms of system parameters and the states of the state variable filters. Using the plant output equation the discrete implicit adaptive observer based on the similar philosophy to Nuyan and Carroll is derived and the parameter adaptation algorithm is derived based on the exponentially weighted least square method. The adaptive model following control system is also constructed according to the proposed observer scheme. The proposed observer and controller are rather than simple structure and have a fast adaptive algorithm, so it may be expected that the scheme is suitable to the practical application of control system design. The effectiveness of the algorithm and structure is illustrated by the computer simulation of a third order system. The simulation results show that the convergence speed is proportinal to the increasing of weighting factor alpha, and that the full order and reduced order observer have similar convergence characteristics.

  • PDF