• Title/Summary/Keyword: Discrete nonlinear systems

Search Result 217, Processing Time 0.025 seconds

Robust Intelligent Digital Redesign (강인 지능형 디지털 재설계 방안 연구)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.220-222
    • /
    • 2006
  • This paper presents intelligent digital redesign method of global approach for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated lineal operators to be matched. Also, by using the bilinear and inverse bilinear approximation method, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs). Finally, a T-S fuzzy model for the chaotic Lorentz system is used as an example to guarantee the stability and effectiveness of the proposed method.

  • PDF

SOLVING A SYSTEM OF THE NONLINEAR EQUATIONS BY ITERATIVE DYNAMIC PROGRAMMING

  • Effati, S.;Roohparvar, H.
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.399-409
    • /
    • 2007
  • In this paper we use iterative dynamic programming in the discrete case to solve a wide range of the nonlinear equations systems. First, by defining an error function, we transform the problem to an optimal control problem in discrete case. In using iterative dynamic programming to solve optimal control problems up to now, we have broken up the problem into a number of stages and assumed that the performance index could always be expressed explicitly in terms of the state variables at the last stage. This provided a scheme where we could proceed backwards in a systematic way, carrying out optimization at each stage. Suppose that the performance index can not be expressed in terms of the variables at the last stage only. In other words, suppose the performance index is also a function of controls and variables at the other stages. Then we have a nonseparable optimal control problem. Furthermore, we obtain the path from the initial point up to the approximate solution.

The Design of Predictive Controller for Chaotic Nonlinear Systems Using Wavelet Neural Networks (웨이블릿 신경 회로망을 이용한 혼돈 비선형 시스템에 대한 예측 제어기 설계)

  • 박상우;최종태;최윤호;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.183-186
    • /
    • 2002
  • In this paper, a predictive control method using wavelet neural network for chaotic nonlinear systems is presented. In our method, we use the adjusting method of the parameter for the training a wavelet neural network. The control signals are directly obtained by minimizing the difference between a reference signal and the output of a wavelet neural network. To verify the efficiency of our method, we apply it to the Duffing and the Henon system, which are a representative continuous and discrete time chaotic nonlinear system respectively.

Geometrically nonlinear meshfree analysis of 3D-shell structures based on the double directors shell theory with finite rotations

  • Mellouli, Hana;Jrad, Hanen;Wali, Monther;Dammak, Fakhreddine
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.397-408
    • /
    • 2019
  • In this paper, a geometrically nonlinear meshfree analysis of 3D various forms of shell structures using the double director shell theory with finite rotations is proposed. This theory is introduced in the present method to remove the shear correction factor and to improve the accuracy of transverse shear stresses with the consideration of rotational degrees of freedom.The present meshfree method is based on the radial point interpolation method (RPIM) which is employed for the construction of shape functions for a set of nodes distributed in a problem domain. Discrete system of geometrically nonlinear equilibrium equations solved with the Newton-Raphson method is obtained by incorporating these interpolations into the weak form. The accuracy of the proposed method is examined by comparing the present results with the accurate ones available in the literature and good agreements are found.

Modeling error analyses of FIR filters (FIR 필터의 성능 분석)

  • 권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.470-472
    • /
    • 1987
  • This paper deals with the continuous-discrete estimation problem using FIR filters and performs modeling error analyses of the FIR filters, compared to Kalman filter and the limited memory filters, via computer simulations. It is shown that, the less driving noise the system has, the better performance the FIR filter exhibits and that this characteristic appears rare distinctly in nonlinear system than in linear systems.

  • PDF

Fuzzy H Filtering for Discrete-Time Nonlinear Markovian Jump Systems with State and Output Time Delays (상태 및 출력 시간지연을 갖는 이산 비선형 마코비안 점프 시스템의 퍼지H 필터링)

  • Lee, Kap Rai
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.6
    • /
    • pp.9-19
    • /
    • 2013
  • This paper deals with fuzzy $H_{\infty}$ filtering problem of discrete-time nonlinear Markovian jump systems with state and output time delays. The purpose is to design fuzzy $H_{\infty}$ filter such that the corresponding estimation error system with time delays and initial state uncertainties is stochastically stable and satisfies an $H_{\infty}$ performance level. A sufficient condition for the existence of fuzzy $H_{\infty}$ filter is given in terms of matrix inequalities. In order to relax conservatism, a stochastic mode dependent fuzzy Lyapunov function is employed. The Lyapunov function not only is dependent on the operation modes of system, but also includes the fuzzy membership functions. An illustrative example is finally given to show the applicability and effectiveness of the proposed method.

A Modified Method Based on the Discrete Sliding Norm Transform to Reduce the PAPR in OFDM Systems

  • Salmanzadeh, R.;Mozaffari Tazehkand, B.
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.42-50
    • /
    • 2014
  • Orthogonal frequency division multiplexing (OFDM) is a modulation technique that allows the transmission of high data rates over wideband radio channels subject to frequency selective fading by dividing the data into several narrowband and flat fading channels. OFDM has high spectral efficiency and channel robustness. However, a major drawback of OFDM is that the peak-to-average power ratio (PAPR) of the transmitted signals is high, which causes nonlinear distortion in the received data and reduces the efficiency of the high power amplifier in the transmitter. The most straightforward method to solve this problem is to use a nonlinear mapping algorithm to transform the signal into a new signal that has a smaller PAPR. One of the latest nonlinear methods proposed to reduce the PAPR is the $L_2$-by-3 algorithm, which is based on the discrete sliding norm transform. In this paper, a new algorithm based on the $L_2$-by-3 method is proposed. The proposed method is very simple and has a low complexity analysis. Simulation results show that the proposed method performs better, has better power spectral density, and is less sensitive to the modulation type and number of subcarriers than $L_2$-by-3.

Identification and Control of Nonlinear Systems Using Haar Wavelet Networks

  • Sokho Chang;Lee, Seok-Won;Nam, Boo-Hee
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.169-174
    • /
    • 2000
  • In this paper, Haar wavelet-based neural network is described for the identification and control of discrete-time nonlinear dynamical systems. Wavelets are suited to depict functions with local nonlinearities and fast variations because of their intrinsic properties of finite support and self-similarity. Due to the orthonormal properties of Haar wavelet functions, wavelet neural networks result in a greatly simplified training problem. This wavelet-based scheme performs adaptively both the identification of nonlinear functions and the control of the overall system, while the multilayer neural network is applied to the control system just after its sufficient learning of the unknown functions. Simulation shows that the wavelet network can be a good alternative to a multilayer neural network with backpropagation.

  • PDF

Fuzzy Neural Network Based Generalized Predictive Control of Chaotic Nonlinear Systems (혼돈 비선형 시스템의 퍼지 신경 회로망 기반 일반형 예측 제어)

  • Park, Jong-Tae;Park, Yoon-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.2
    • /
    • pp.65-75
    • /
    • 2004
  • This paper presents a generalized predictive control method based on a fuzzy neural network(FNN) model, which uses the on-line multi-step prediction, fur the intelligent control of chaotic nonlinear systems whose mathematical models are unknown. In our design method, the parameters of both predictor and controller are tuned by a simple gradient descent scheme, and the weight parameters of FNN are determined adaptively during the operation of the system. In order to design a generalized predictive controller effectively, this paper describes computing procedure for each of the two important parameters. Also, we introduce a projection matrix to determine the control input, which deceases the control performance function very rapidly. Finally, in order to evaluate the performance of our controller, the proposed method is applied to the Doffing and Henon systems, which are two representative continuous-time and discrete-time chaotic nonlinear systems, res reactively.

Discrete Optimization of Unsymmetric Composite Laminates Using Linear Aproximation Method (선형 근사화방법을 이용한 비대칭 복합 적층평판의 이산최적화)

  • 이상근;구봉근;한상훈
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.255-263
    • /
    • 1997
  • The optimum design of most structural systems used in practice requires considering design variables as discrete quantities. The present paper shows that the linear approximation method is very effective as a tool for the discrete optimum designs of unsymmetric composite laminates. The formulated design problem is subjected to a multiple in-plane loading condition due to shear and axial forces, bending and twisting moments, which is controlled by maximum strain criterion for each of the plys of a composite laminate. As an initial approach, the process of continuous variable optimization by FDM is required only once in operating discrete optimization. The nonlinear discrete optimization problem that has the discrete and continuous variables is transformed into the mixed integer programming problem by SLDP. In numerical examples, the discrete optimum solutions for the unsymmetric composite laminates consisted of six plys according to rotated stacking sequence were found, and then compared the results with the nonlinear branch and bound method to verify the efficiency of present method.

  • PDF