• Title/Summary/Keyword: Discrete information

Search Result 1,925, Processing Time 0.039 seconds

Comparison of Scattered Light of ex vivo Mouse Neutrophils by Different Wavelength Laser Irradiation (2개의 레이저 파장에 따른 마우스 호중구의 산란광 비교 연구)

  • Park, Jae-Sung;Son, Min-Ji;Hwang, Chang-Soon;Lee, Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.365-378
    • /
    • 2022
  • Complete blood cell count(CBC) is a technique that counts leukocytes for each type of blood cell being analyzed. The principle is that laser is incident to ex vivo flowing leukocytes in a microcapillary tube and scattered light occurs by laser and leukocytes. By collecting the scattered light, we can count the types of cells because different cells generate different light-scattering patterns. However, the technique has an intrinsic limitation, scattering pattern is shown in a wide range region in the resulting, which makes it difficult to accurate analyze and use fluorescent dyes. To overcome this limitation, a new design of CBC with a dual laser, which irradiates with orthogonal angles for collecting quad-scattering information was proposed. Before development, the scattering difference depending on wavelength must be investigated to only catch up to the scattered signal by angles. Some studies, which focused on simple particles, have been conducted to theoretically and experimentally investigate different scatterings by wavelength. In this study, we propose an optical system for measuring scattered light and investigate a complex particle. As a result, the green laser made strong scattering signals in both the forward and side direction: 10% and 30%, respectively.

AUTOMATIC DATA COLLECTION TO IMPROVE READY-MIXED CONCRETE DELIVERY PERFORMANCE

  • Pan Hao;Sangwon Han
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.187-194
    • /
    • 2011
  • Optimizing truck dispatching-intervals is imperative in ready mixed concrete (RMC) delivery process. Intervals shorter than optimal may induce queuing of idle trucks at a construction site, resulting in a long delivery cycle time. On the other hand, intervals longer than optimal can trigger work discontinuity due to a lack of available trucks where required. Therefore, the RMC delivery process should be systematically scheduled in order to minimize the occurrence of waiting trucks as well as guarantee work continuity. However, it is challenging to find optimal intervals, particularly in urban areas, due to variations in both traffic conditions and concrete placement rates at the site. Truck dispatching intervals are usually determined based on the concrete plant managers' intuitive judgments, without sufficient and reliable information regarding traffic and site conditions. Accordingly, the RMC delivery process often experiences inefficiency and/or work discontinuity. Automatic data collection (ADC) techniques (e.g., RFID or GPS) can be effective tools to assist plant managers in finding optimal dispatching intervals, thereby enhancing delivery performance. However, quantitative evidence of the extent of performance improvement has rarely been reported to data, and this is a central reason for a general reluctance within the industry to embrace these techniques, despite their potential benefits. To address this issue, this research reports on the development of a discrete event simulation model and its application to a large-scale building project in Abu Dhabi. The simulation results indicate that ADC techniques can reduce the truck idle time at site by 57% and also enhance the pouring continuity in the RMC delivery process.

  • PDF

Image-based Soft Drink Type Classification and Dietary Assessment System Using Deep Convolutional Neural Network with Transfer Learning

  • Rubaiya Hafiz;Mohammad Reduanul Haque;Aniruddha Rakshit;Amina khatun;Mohammad Shorif Uddin
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.158-168
    • /
    • 2024
  • There is hardly any person in modern times who has not taken soft drinks instead of drinking water. The rate of people taking soft drinks being surprisingly high, researchers around the world have cautioned from time to time that these drinks lead to weight gain, raise the risk of non-communicable diseases and so on. Therefore, in this work an image-based tool is developed to monitor the nutritional information of soft drinks by using deep convolutional neural network with transfer learning. At first, visual saliency, mean shift segmentation, thresholding and noise reduction technique, collectively known as 'pre-processing' are adopted to extract the location of drinks region. After removing backgrounds and segment out only the desired area from image, we impose Discrete Wavelength Transform (DWT) based resolution enhancement technique is applied to improve the quality of image. After that, transfer learning model is employed for the classification of drinks. Finally, nutrition value of each drink is estimated using Bag-of-Feature (BoF) based classification and Euclidean distance-based ratio calculation technique. To achieve this, a dataset is built with ten most consumed soft drinks in Bangladesh. These images were collected from imageNet dataset as well as internet and proposed method confirms that it has the ability to detect and recognize different types of drinks with an accuracy of 98.51%.

A Ligthtweight Experimental Frame based on Microservice Architecture (마이크로서비스아키텍처 기반 경량형 모의실험환경)

  • Gyu-Sik Ham;Hyeon-Gi Kim;Jin-Woo Kim;Soo-Young Jang;Eun-Kyung Kim;Chang-beom Choi
    • Journal of IKEEE
    • /
    • v.28 no.2
    • /
    • pp.123-130
    • /
    • 2024
  • As technology advances swiftly and the lifespan of products becomes increasingly short, there is a demand to fasten the pace of research outcomes, product development, and market introduction. As a result, the researchers and developers need a computational experiment environment that enables rapid verification of the experiment and application of research findings. Such an environment must efficiently harness all available computational resources, manage simulations across diverse test scenarios, and support the experimental data collection. This research introduces the design and implementation of an experimental frame based on a microservice architecture. The experimental frame leverages scripts to utilize computing resources optimally, making it more straightforward for users to conduct simulations. It features an experimental frame capable of automatically deploying scenarios to the computing components. This setup allows for the automatic configuration of both the computing environment and experiments based on user-provided scenarios and experimental software, facilitating effortless execution of simulations.

Design of EPG Information Player System using DCT based Blind Watermark (DCT기반의 블라인드 워터마크를 이용한 EPG 정보 재생기 설계)

  • Kim, Dae-Jin;Choi, Hong-Sub
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.4
    • /
    • pp.1-10
    • /
    • 2011
  • While the broadband network and multimedia technologies have been developing, the commercial market of digital contents has also been widely spreading with recently starting IPTV. Generally, PC player can display digital contents obtained through middleware like a settop box and can only bring the informations about contents like CODEC, bitrate etc. useful for only experts. But general users want to know more optional informations like content's subject, description etc. So unlike previous PC player, we proposed a player system that can get inserted informations, namely EPG(Electronic Program Guide), without database after bringing contents to PC through settop box. In addition, we also proposed DCT(Discrete Cosine Transform) based blind watermark generating method to insert EPG informations. We can extract watermark without original image and insert robust watermark in proportion to coefficients in frequency domain. And we analyzed and parsed PSI data from MPEG-TS. So we could insert wanted information using watermark from EPG. And we composed UI by extracting EPG information from watermark interted contents. Finally we modularized whole system into the watermark insert/extract application and directshow filter based player. So we tried to design this system so that the general developer can do in a way that is easier and faster.

Compensation Analysis of Cell Delay Variation for ATM Transmission in the TDMA Method (TDMA 방식에서 ATM 전송을 위한 셀 지연 변이의 보상 해석)

  • Kim, Jeong-Ho;Choe, Gyeong-Su
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.2
    • /
    • pp.295-304
    • /
    • 1996
  • Toprovide economical BISDN service, with which integration process of many types of media is possible, it is necessary to construct a system with ground network and satellite network combined. The method for this type of transmission using satellite is TDMA that can provide services to many users in various area. However, the most difficult task to connect TDMA which uses synchronous method to ATM which used asynchronous transfer mode is the deterioration n of ATM transmission quality such as cell delay variation. Therefore, it is necessary to develop delay variation compensation method which can confront to the ATM. Efficient ways to use satellite links under the conditions such that maximum efficiency of the delay variation is limited under the required value, and the burst characteristic of transmission cell does not increase are being researched for translation between in ATM and TDMA. This paper points out the problems when time stamp method, reviewd in ground network, is applied to the satellite links to compensate the delay variation .To solve the problem, discrete cell count method is introduced along with the calculation of transmission capacity and error rate.Also, from the observation of stab-ility of the system and verification of reliability even when singal error occurred in the cell transmission timing information, the proposed compensation method appeared to be excellent.

  • PDF

Design of a Block-Based 2D Discrete Wavelet Transform Filter with 100% Hardware Efficiency (100% 하드웨어 효율을 갖는 블록기반의 이차원 이산 웨이블렛 변환 필터 설계)

  • Kim, Ju-Young;Park, Tae-Guen
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.12
    • /
    • pp.39-47
    • /
    • 2010
  • This paper proposes a fully-utilized block-based 2D DWT architecture, which consists of four 1D DWT filters with two-channel QMF PR Lattice structure. For 100% hardware utilization, we propose a new method which processes four input values at the same time. On the contrary to the image-based 2D DWT which requires large memories, we propose a block-based 2D DWT so that we only need 2MN-3N of storages, where M and N stand for filter lengths and width of the image respectively. Furthermore, the proposed architecture processes in horizontal and vertical directions simultaneously so that it computes the DWT for an $N{\times}N$ image within a period of $N^2(1-2^{-2J})/3$. Compared to existing approaches, the proposed architecture shows 100% of hardware utilization and high throughput rate. However, the proposed architecture may suffer from the long critical path delay due to the cascaded lattices in 1D DWT filters. This problem can be mitigated by applying the pipeline technique with maximum four level. The proposed architecture has been designed with VerilogHDL and synthesized using DongbuAnam $0.18{\mu}m$ standard cell.

Security Threats and Potential Security Requirements in 5G Non-Public Networks for Industrial Applications

  • Park, Tae-Keun;Park, Jong-Geun;Kim, Keewon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.11
    • /
    • pp.105-114
    • /
    • 2020
  • In this paper, we address security issues in 5G non-public networks for industrial applications. In contrast to public networks that offer mobile network services to the general public, 5G non-public networks provide 5G network services to a clearly defined user organization or groups of organizations, and they are deployed on the organization's defined premises, such as a campus or a factory. The main goal of this paper is to derive security threats and potential security requirements in the case that 5G non-public networks are built for discrete and process industries according to the four deployment models of 5G-ACIA (5G Alliance for Connected Industries and Automation). In order to clarify the scope of this paper, we express the security toolbox to be applied to 5G non-public networks in the form of the defense in depth concept. Security issues related to general 5G mobile communication services are not within the scope of this paper. We then derive the security issues to consider when applying the 5G-ACIA deployment models to the industrial domain. The security issues are divided into three categories, and they are described in the order of overview, security threats, and potential security requirements.

A Schematic Map Generation System Using Centroidal Voronoi Tessellation and Icon-Label Replacement Algorithm (중심 보로노이 조각화와 아이콘 및 레이블 배치 알고리즘을 이용한 도식화된 지도 생성 시스템)

  • Ryu Dong-Sung;Uh Yoon;Park Dong-Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.2
    • /
    • pp.139-150
    • /
    • 2006
  • A schematic map is a special purpose map which is generated to recognize it's objects easily and conveniently via simplifying and highlighting logical geometric information of a map. To manufacture the schematic map with road, label and icon, we must generate simplified route map and replace many geometric objects. Performing a give task, however, there are an amount of overlap areas between geometric objects whenever we process the replacement of geometry objects. Therefore we need replacing geometric objects without overlap. But this work requires much computational resources, because of the high complexity of the original geometry map. We propose the schematic map generation system whose map consists of icons and label. The proposed system has following steps: 1) eliminating kinks that are least relevant to the shape of polygonal curve using DCE(Discrete Curve Evolution) method. 2) making an evenly distributed route using CVT(Centroidal Voronoi Tessellation) and Grid snapping method. Therefore we can keep the structural information of the route map from CVT method. 3) replacing an icon and label information with collision avoidance algorithm. As a result, we can replace the vertices with a uniform distance and guarantee the available spaces for the replacement of icons and labels. We can also minimize the overlap between icons and labels and obtain more schematized map.

  • PDF

FBcastS: An Information System Leveraging the K-Maryblyt Forecasting Model (K-Maryblyt 모델 구동을 위한 FBcastS 정보시스템 개발)

  • Mun-Il Ahn;Hyeon-Ji Yang;Eun Woo Park;Yong Hwan Lee;Hyo-Won Choi;Sung-Chul Yun
    • Research in Plant Disease
    • /
    • v.30 no.3
    • /
    • pp.256-267
    • /
    • 2024
  • We have developed FBcastS (Fire Blight Forecasting System), a cloud-based information system that leverages the K-Maryblyt forecasting model. The FBcastS provides an optimal timing for spraying antibiotics to prevent flower infection caused by Erwinia amylovora and forecasts the onset of disease symptoms to assist in scheduling field scouting activities. FBcastS comprises four discrete subsystems tailored to specific functionalities: meteorological data acquisition and processing, execution of the K-Maryblyt model, distribution of web-based information, and dissemination of spray timing notifications. The meteorological data acquisition subsystem gathers both observed and forecasted weather data from 1,583 sites across South Korea, including 761 apple or pear orchards where automated weather stations are installed for fire blight forecast. This subsystem also performs post-processing tasks such as quality control and data conversion. The model execution subsystem operates the K-Maryblyt model and stores its results in a database. The web-based service subsystem offers an array of internet-based services, including weather monitoring, mobile services for forecasting fire blight infection and symptoms, and nationwide fire blight monitoring. The final subsystem issues timely notifications of fire blight spray timing alert to growers based on forecasts from the K-Maryblyt model, blossom status, pesticide types, and field conditions, following guidelines set by the Rural Development Administration. FBcastS epitomizes a smart agriculture internet of things (IoT) by utilizing densely collected data with a spatial resolution of approximately 4.25 km to improve the accuracy of fire blight forecasts. The system's internet-based services ensure high accessibility and utility, making it a vital tool in data-driven smart agricultural practices.