• 제목/요약/키워드: Discrete Time Simulation

검색결과 627건 처리시간 0.024초

The impact of artificial discrete simulation of wind field on vehicle running performance

  • Wu, Mengxue;Li, Yongle;Chen, Ning
    • Wind and Structures
    • /
    • 제20권2호
    • /
    • pp.169-189
    • /
    • 2015
  • To investigate the effects of "sudden change" of wind fluctuations on vehicle running performance, which is caused by the artificial discrete simulation of wind field, a three-dimensional vehicle model is set up with multi-body dynamics theory and the vehicle dynamic responses in crosswind conditions are obtained in time domain. Based on Hilbert Huang Transform, the effects of simulation separations on time-frequency characteristics of wind field are discussed. In addition, the probability density distribution of "sudden change" of wind fluctuations is displayed, addressing the effects of simulation separation, mean wind speed and vehicle speed on the "sudden change" of wind fluctuations. The "sudden change" of vehicle dynamic responses, which is due to the discontinuity of wind fluctuations on moving vehicle, is also analyzed. With Principal Component Analysis, the comprehensive evaluation of vehicle running performance in crosswind conditions at different simulation separations of wind field is investigated. The results demonstrate that the artificial discrete simulation of wind field often causes "sudden change" in the wind fluctuations and the corresponding vehicle dynamic responses are noticeably affected. It provides a theoretical foundation for the choice of a suitable simulation separation of wind field in engineering application.

Framework for Component-based Modeling/Simulation of Discrete Event Systems

  • Cho, Young-Ik;Kim, Jae-Hyun;Kim, Tag-Gon
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2001년도 The Seoul International Simulation Conference
    • /
    • pp.484-484
    • /
    • 2001
  • The sophistication of current software applications results in the increasing cost fur software development time. The component-based software development framework is proposed to overcome the difficulty and time-consuming requirements by modularity and reusability. As is the general software case, a component-based simulation framework encourages the reusability of the real system model based on the modularity of the applied simulation methodology. This paper presents a component-based simulation environment that is based on the DEVS/COM run-time infrastructure. The DEVS (Discrete Event System Specification) formalism provides a formal modeling and simulation framework for the generic dynamic systems [1] and Microsoft's COM (Component Object Model) is one of the strongest competitor fur the component standard. The reusability by the DEVS/COM simulation environment saves model development time remarkably and component technology make simulator itself to be a subparts of real application.

  • PDF

이산형 변수 시스템의 설계를 위한 시뮬레이션 활용 기법 연구 (A Method for Design of Discrete Variable Stochastic Systems using Simulation)

  • 박경종
    • 한국시뮬레이션학회논문지
    • /
    • 제8권3호
    • /
    • pp.1-16
    • /
    • 1999
  • This paper deals with a discrete simulation optimization method for designing a complex probabilistic discrete event system. The proposed algorithm in this paper searches the effective and reliable alternatives satisfying the target values of the system to be designed through a single run in a relatively short time period. It tries to estimate an autoregressive model, and construct mean and confidence interval for evaluating correctly the objective function obtained by small amount of output data. The experimental results using the proposed method are also shown.

  • PDF

Design of a Discrete Flux Observer by the Power Series Approximation

  • Kim, Kyung-Seo;Kim, Il-Han
    • Journal of Power Electronics
    • /
    • 제11권3호
    • /
    • pp.304-310
    • /
    • 2011
  • The power series approximation method is proposed for real time implementations of a discrete flux observer. The proposed method improves the performance of the discrete flux observer in the case of a low sampling rate and high speed range, where the simple discrete flux observer converted by the Euler method cannot estimate the actual flux precisely. The performance of discrete flux observers with different orders of approximation is compared to find out the proper order of approximation. The validity of the proposed method is verified through simulation and experiment.

이산 사건/이산 시간 혼합형 시뮬레이션 모델 구조를 사용한 유도 어뢰의 탐지 효과도 분석 (Analysis of Detecting Effectiveness of a Homing Torpedo using Combined Discrete Event & Discrete Time Simulation Model Architecture)

  • 하솔;차주환;이규열
    • 한국시뮬레이션학회논문지
    • /
    • 제19권2호
    • /
    • pp.17-28
    • /
    • 2010
  • 음향 탐지나 항적 탐지 등을 이용하여 표적을 추적하는 유도 어뢰는 개념 설계 단계에서부터 군 요구를 분석하고 군요구에 따른 어뢰의 개략 설계 사양 도출을 필요로 한다. 이를 위해 이산 사건/이산 시간 혼합형 시뮬레이션 모델 구조를 적용하여 어뢰가 목적하고 있는 탐지 임무의 정량적인 달성 정도를 나타내는 탐지 효과도를 분석하였다. 어뢰의 탐지효과도 분석을 위해 초기 개념 설계 단계에서 주어지는 어뢰의 개략적인 설계 변수를 바탕으로 어뢰와 표적의 수학 모델을 설정하였으며, 이와 함께 이산 사건/이산 시간 혼합형 시뮬레이션 모델 구조를 적용하여 아 잠수함 모델, 어뢰 모델, 표적 모델을 구성하였다. 특히 어뢰 모델에는 유도 어뢰의 특성을 고려하여 탐색 운동 방법, 음향 탐지 방법 등을 적용하였으며. 각 모델을 구성하는 설계 변수에는 오차 모형을 반영하였다. 이를 바탕으로 어뢰가 표적을 탐지하는 과정에 대해 반복 시뮬레이션을 수행하여 설계 변수 변화에 따른 어뢰의 탐지 효과도를 분석하였다.

이산사건 시뮬레이션을 사용한 시스템의 설계 (System Design Using Discrete Event Simulation)

  • 이영해
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1998년도 The Korea Society for Simulation 98 춘계학술대회 논문집
    • /
    • pp.50-55
    • /
    • 1998
  • In this paper we use discrete simulation method to get the criteria of system evaluation required in the case of designing the complicated probabilistic event system having discrete probabilistic variables and to search the effective and reliable alternatives to satisfy the objective value of the given system through on-line, single run within the short time period. If we find the alternative we construct the algorithm which change values of decision variables and determining alternative by using the stopping algorithm which end the simulation in the steady state of system. In order to prevent the loss of data when we analyze the acquired design alternative in the steady state we provide the background of the estimation of the autoregressive model and mean and confidence interval for evaluating correctly the objective function obtained by the small amount of output data through the short time period simulation.

  • PDF

Discrete-time learning control for robotic manipulators

  • Suzuki, Tatsuya;Yasue, Masanori;Okuma, Shigeru;Uchikawa, Yoshiki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.1069-1074
    • /
    • 1989
  • A discrete-time learning control for robotic manipulators is studied using its pulse transfer function. Firstly, discrete-time learning stability condition which is applicable to single-input two-outputs systems is derived. Secondly, stability of learning algorithm with position signal is studied. In this case, when sampling period is small, the algorithm is not stable because of an unstable zero of the system. Thirdly, stability of algorithm with position and velocity signals is studied. In this case, we can stabilize the learning control system which is unstable in learning with only position signal. Finally, simulation results on the trajectory control of robotic manipulators using the discrete-time learning control are shown. This simulation results agree well with the analytical ones.

  • PDF

Estimation error bounds of discrete-time optimal FIR filter under model uncertainty

  • Yoo, Kyung-Sang;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.352-355
    • /
    • 1995
  • In this paper, estimation error bounds of the optimal FIR (Finite Impulse Response) filter, which is proposed by Kwon et al.[1, 2], are presented in discrete-time systems with the model uncertainty. Performance bounds are here represented by the upper bounds on the difference of the estimation error covariances between the nominal and real values in case of the systems with the noise or model parameter uncertainty. The estimation error bounds of the discrete-time optimal FIR filter is compared with those of the Kalman filter via a numerical example applied to the simulation problem by Toda and Patel[3]. Simulation results show that the former has robuster performance than the latter.

  • PDF

단일 실행의 빠른 근사해 기법과 반복 실행의 최적화 기법을 이용한 이산형 시스템의 시뮬레이션 연구 (Simulation Study of Discrete Event Systems using Fast Approximation Method of Single Run and Optimization Method of Multiple Run)

  • 박경종;이영해
    • 대한산업공학회지
    • /
    • 제32권1호
    • /
    • pp.9-17
    • /
    • 2006
  • This paper deals with a discrete simulation optimization method for designing a complex probabilistic discrete event simulation. The developed algorithm uses the configuration algorithm that can change decision variables and the stopping algorithm that can end simulation in order to satisfy the given objective value during single run. It tries to estimate an auto-regressive model for evaluating correctly the objective function obtained by a small amount of output data. We apply the proposed algorithm to M/M/s model, (s, S) inventory model, and known-function problem. The proposed algorithm can't always guarantee the optimal solution but the method gives an approximate feasible solution in a relatively short time period. We, therefore, show the proposed algorithm can be used as an initial feasible solution of existing optimization methods that need multiple simulation run to search an optimal solution.

A new discrete-time robot model and its validity test

  • Lai, Ru;Ohkawa, Fujio;Jin, Chunzhi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.807-810
    • /
    • 1997
  • Digital control of robot manipulator employs discrete-time robot models. It is important to explore effective discrete-time robot models and to analyze their properties in control system designs. This paper presents a new type discrete-time robot model. The model is derived by using trapezoid rule to approximate the convolution integral term, then eliminating nonlinear force terms from robot dynamical equations. The new model obtained has very simple structure, and owns the properties of independence to the nonlinear force terms. According to evaluation criteria, three aspects of the model properties: model accuracy, model validity range and model simplicity are examined and compared with commonly used discrete-time robot models. The validity of the proposed model and its advantages to control system designs are verified by simulation results.

  • PDF