• Title/Summary/Keyword: Discrete Optimization

Search Result 508, Processing Time 0.029 seconds

The Optimization of Current Mode CMOS Multiple-Valued Logic Circuits (전류구동 CMOS 다치 논리 회로설계 최적화연구)

  • Choi, Jai-Sock
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.3
    • /
    • pp.134-142
    • /
    • 2005
  • The implementation of Multiple-Valued Logic(MVL) based on Current-Mode CMOS Logic(CMCL) circuits has recently been achieved. In this paper, four-valued Unary Multiple-Valued logic functions are synthesized using current-mode CMOS logic circuits. We properly make use of the fact that the CMCL addition of logic values represented using discrete current values can be performed at no cost and that negative logic values are readily available via reversing the direction of current flow. A synthesis process for CMCL circuits is based upon a logically complete set of basic elements. Proposed algorithm results in less expensive realization than those achieved using existing techniques in terms of the number of transistors needed. As an alternative to the cost-table techniques Universal Unary Programmable Circuit (UUPC) for a unary function is also proposed.

  • PDF

An Effective Orientation-based Method and Parameter Space Discretization for Defined Object Segmentation

  • Nguyen, Huy Hoang;Lee, GueeSang;Kim, SooHyung;Yang, HyungJeong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3180-3199
    • /
    • 2013
  • While non-predefined object segmentation (NDOS) distinguishes an arbitrary self-assumed object from its background, predefined object segmentation (DOS) pre-specifies the target object. In this paper, a new and novel method to segment predefined objects is presented, by globally optimizing an orientation-based objective function that measures the fitness of the object boundary, in a discretized parameter space. A specific object is explicitly described by normalized discrete sets of boundary points and corresponding normal vectors with respect to its plane shape. The orientation factor provides robust distinctness for target objects. By considering the order of transformation elements, and their dependency on the derived over-segmentation outcome, the domain of translations and scales is efficiently discretized. A branch and bound algorithm is used to determine the transformation parameters of a shape model corresponding to a target object in an image. The results tested on the PASCAL dataset show a considerable achievement in solving complex backgrounds and unclear boundary images.

A Real-Time JPEG2000 Codec Implementation on ARM9 Processor (ARM9 프로세서용 실시간 JPEG2000 코덱의 구현)

  • Kim, Young-Tae;Cho, Shi-Won;Lee, Dong-Wook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.149-155
    • /
    • 2007
  • In this paper, we propose an real-time implementation of JPEG2000 codec on the ARM9 processor. The implemented codec is designed to separate control codes from data management codes in order to use effectively the system resources such as processor and memory. Especially, in embedded situations like cellular phones it is very important to provide good services using limited processor and internal memory. Since ARM9 series processors do not provide floating-point, large amount of computational time is required to perform the operation which needs highly repetitive floating-point computations like DWT(discrete wavelet transform). The proposed codec was programed using fixed-point to overcome this weakness. Also code optimization considering cache memory was applied to further improve the computational speed.

  • PDF

Optimal Capacitor Placement and Operation for Loss reduction and Improvement of Voltage Profile in Radial Distribution Systems (방사상 배전계통의 손실감소 및 전압보상을 위한 커패시터 최적 배치 및 운용)

  • Kim, Tae-Kyun;Baek, Young-Ki;Kim, Kyu-Ho;You, Seok-Ku
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1009-1011
    • /
    • 1997
  • This paper presents an optimization method which determines locations and size of capacitors simultaneously while minimizing power losses and improving voltage profile in radial distribution systems. Especially, the cost function associated with capacitor placement is considered as step function due to banks of standard discrete capacities. Genetic algorithms(GA) are used to obtain efficiently the solution of the cost function associated with capacitors which is non-continuous and non-differentiable function. The strings in GA consist of the node number index and size of capacitors to be installed. The length mutation operator, which is able to change the length of strings in each generation, is used. The proposed method which determines locations and size of capacitors simultaneously can reduce power losses and improve' voltage profile with capacitors of minimum size. Its efficiency is proved through the application in radial distribution systems.

  • PDF

Minimum Weight Design of Transverse Frames of Oil Tankers by Generalized Slope Deflection Method (일반화 경사처짐법에 의한 유조선 횡강도 부재의 최소 중량 설계)

  • Chang-Doo Jang;Seung-Soo Na
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.3
    • /
    • pp.103-111
    • /
    • 1996
  • A generalized slope deflection method has already been developed by the authors from the existing one, and applied to the 3-dimensional structural analysis of tankers idealized as frame models to verify the effectiveness of the method from the analysis viewpoint. In this study, a minimum hull weight design program of tankers is developed to verify the effectiveness of the method from the design viewpoint by the combination of generalized slope deflection method and optimization method considering discrete design variables. By this program, it is possible to determine the scantling of each member of actual tankers that give minimum weight under given constraints. Also, a considerable weight saving has been found compared with existing ship.

  • PDF

Minimum Weight Design for Watertight and Deep Tank Corrugated Bulkhead (수밀 및 디프탱크 파형 격벽의 최소중량설계)

  • 신상훈;남성길
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.6
    • /
    • pp.12-19
    • /
    • 2003
  • Corrugated bulkheads for a bulk carrier are divided into watertight bulkheads and deep tank bulkheads. Design of the watertight bulkheads is principally determined by the permissible limit of Classification and IACS requirements. But, the verification of strength through finite element analysis is indispensable for design of the deep tank bulkheads. A stage for stress evaluation of corrugated part is required for optimum structural design of the deep tank bulkheads. Since the finite element analysis for real model requires excessive amount of calculation time, in this study one corrugated structure is replaced with beam element and is idealized as 2 dimensional frame structure connected to upper and lower stool Minimum weight design of the deep tank bulkheads is performed through generalized sloped deflection method(GSDM) as direct calculation method. The purpose of this study is the development of design system for the minimization of steel weight of deep tank bulkheads as well as watertight bulkheads. Discrete variables are used as design variables for the practical design. Evolution strategies(ES) is used as an optimization technique.

A Lagrangian Heuristic for the Multidimensional 0-1 Knapsack Problem (다중 배낭 문제를 위한 라그랑지안 휴리스틱)

  • Yoon, You-Rim;Kim, Yong-Hyuk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.755-760
    • /
    • 2010
  • In general, Lagrangian method for discrete optimization is a kind of technique to easily manage constraints. It is traditionally used for finding upper bounds in the branch-and-bound method. In this paper, we propose a new Lagrangian search method for the 0-1 knapsack problem with multiple constraints. A novel feature of the proposed method different from existing Lagrangian approaches is that it can find high-quality lower bounds, i.e., feasible solutions, efficiently based on a new property of Lagrangian vector. We show the performance improvement of the proposed Lagrangian method over existing ones through experiments on well-known large scale benchmark data.

An Optimal Framework of Video Adaptation and Its Application to Rate Adaptation Transcoding

  • Kim, Jae-Gon;Wang, Yong;Chang, Shih-Fu;Kim, Hyung-Myung
    • ETRI Journal
    • /
    • v.27 no.4
    • /
    • pp.341-354
    • /
    • 2005
  • The adaptation of video according to the heterogeneous and dynamic resource constraints on networks and devices, as well as on user preferences, is a promising approach for universal access and consumption of video content. For optimal adaptation that satisfies the constraints while maximizing the utility that results from the adapted video, it is necessary to devise a systematic way of selecting an appropriate adaptation operation among multiple feasible choices. This paper presents a general conceptual framework that allows the formulation of various adaptations as constrained optimization problems by modeling the relations among feasible adaptation operations, constraints, and utilities. In particular, we present the feasibility of the framework by applying it to a use case of rate adaptation of MPEG-4 video with an explicit modeling of adaptation employing a combination of frame dropping and discrete cosine transform coefficient dropping, constraint, utility, and their mapping relations. Furthermore, we provide a description tool that describes the adaptation-constraint-utility relations as a functional form referred to as a utility function, which has been accepted as a part of the terminal and network quality of service tool in MPEG-21 Digital Item Adaptation (DIA).

  • PDF

Vibration Control System Design of Composite Shell by Profile Optimization of PVDF film (PVDF 필름 형상최적화에 의한 복합재료 쉘의 진동제어 시스템 설계)

  • 황준석;목지원;김승조
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.228-231
    • /
    • 2000
  • The active vibration control of laminated composite shell has been performed with the optimized sensor/actuator system. PVDF film is used fur the material of sensor/actuator. Finite element method is utilized to model the whole structure including the piezoelectric sensor/actuator system, The distributed selective modal sensor/actuator system is established to prevent the adverse effect of spillover. In the finite element discretization process, the nine-node shell element with five nodal degrees of freedoms is used. Electrode patterns and lamination angles of sensor/actuator are optimized using genetic algorithm. Sensor is designed to minimize the observation spillover, and actuator is designed to minimize the system energy of the control modes under a given initial condition. Modal sensor/actuator profiles are optimized for the first and the second modes suppression of singly curved cantilevered composite shell structure. Discrete LQG method is used as a control law. The real time vibration control with profile optimized sensor/actuator system has been performed. Experimental result shows successful performance of the integrated structure for the active vibration control.

  • PDF

Intelligent Digital Redesign of Biodynamic Model of HIV-1 (HIV-1 바이오 동역학 모델의 지능형 디지털 재설계)

  • Kim Do-Wan;Joo Young-Hoon;Park Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.547-553
    • /
    • 2006
  • This paper studies digital control of biodynamic model of HIV-1 via intelligent digital redesign (IDR). The purpose of the IDR is to develop an equivalent digital fuzzy controller maintaining the satisfactory performance of an existing continuous-time fuzzy controller in the sense of the state-matching. Some conditions for the stability as well as the global state-matching are provided.. They are given by the form of the linear matrix inequalities (LMIs) and thereby easily tractable by the convex optimization techniques. The main features of the proposed method are that 1) the generalized control scheme is provided for the multirate as well as the single-rate digital controllers; 2) a new compensated block-pulse function method is applied to closely match the states of the continuous-time and the sampled-data fuzzy systems in the discrete-time domain; 3) the two-step procedure of IDR is presented to prevent the performance degradation caused by the additional stability conditions. The applicability of the proposed approach is shown through the biodynamic model of HIV-1.