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Abstract 
 

While non-predefined object segmentation (NDOS) distinguishes an arbitrary self-assumed 

object from its background, predefined object segmentation (DOS) pre-specifies the target 

object. In this paper, a new and novel method to segment predefined objects is presented, by 

globally optimizing an orientation-based objective function that measures the fitness of the 

object boundary, in a discretized parameter space. A specific object is explicitly described by 

normalized discrete sets of boundary points and corresponding normal vectors with respect to 

its plane shape. The orientation factor provides robust distinctness for target objects. By 

considering the order of transformation elements, and their dependency on the derived 

over-segmentation outcome, the domain of translations and scales is efficiently discretized. A 

branch and bound algorithm is used to determine the transformation parameters of a shape 

model corresponding to a target object in an image. The results tested on the PASCAL dataset 

show a considerable achievement in solving complex backgrounds and unclear boundary 

images. 
 

 

Keywords: Solution space discretization, global optimization, super-pixel, object 

segmentation, branch-bound. 
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1. Introduction 

First of all, it is necessary to differentiate image segmentation and object segmentation. 

Image segmentation is a classic problem in computer vision. It targets the partitioning of an 

image into many non-semantic regions, according to certain low-level features, such as color, 

intensity, gradient, and/or texture. The result of image segmentation does not indicate which 

regions belong to the foreground or background. Since it relies on low-level features, it 

consists of many assumptions, e.g. regions belonging to an object have homogenous color, and 

two adjacent regions are apparently different, in terms of color or intensity. On the other hand, 

object segmentation aims to find regions or boundaries of objects in an image. It explicitly 

distinguishes the foreground and background. Object segmentation is still a challenging 

problem, attracting the interest of many researchers. 

Non-predefined object segmentation (NDOS) raised a lot of attention for decades and has 

been studied extensively. In active contour based methods [1], a contour is initialized around a 

target object. The process of minimizing the energy function that presents the curvature and 

the smoothness of the given contour evolutionally deforms it to the boundary of the target 

object. GrabCut [2] requires initializing a rectangle enclosing the target object. The object is 

segmented by minimizing an energy, relying on the knowledge of data inside and outside the 

rectangle. Another interactive object segmentation method is lazy snapping [3]. The user 

needs to provide two types of markers (i.e. foreground and background) appropriately near the 

boundary of the target object. The segmentation is achieved by global optimization using 

graph-cut [4]. Some non-initialization segmentation methods rely on the saliency map[5]. 

Instead of utilizing a certain prior, K. Fukuchi et al. [6] used high-saliency regions as an 

automatic prior, to minimize an energy function based on graph-cut. Ming-Ming Cheng et al. 

[7] presented an outstanding method to find a saliency map based on global contrast of both 

feature and spatial information. Furthermore, P. Mehrani et al. [8] combined saliency map, 

graph-cut, and learning in their work. All in all, NDOS methods aim to segment certain objects 

in an image, without knowing its actual shapes. They rely on basic characteristics, such as 

color continuity, and intensity discontinuity (high gradient magnitudes, or edges), to 

differentiate object and background. 

In predefined object segmentation (DOS), the idea of utilizing prior shape for object 

detection was first raised by D. H. Ballard [9] in a paper about the generalized Hough 

transform. In the research, an object is described by a reference point, and a set of vectors 

presenting discrete points on the boundary of the object, with respect to the reference point.  

Different from prior input in NDOS methods, prior input in DOS has a higher level 

representation, in terms of its structure. Such priors describe the whole shape of a target object, 

rather than its internal characteristics. V. Lempitsky et al. [10] proposed a segmentation 

framework in which priors are exemplars of many target objects. An object is defined by 

binary images of its plane shapes from various aspects. A. Toshev et al. [11] presented an 

object descriptor that is based on the holistic nature of an object. According to the descriptor, 

each boundary pixel is linked to all remaining ones, to form a ‘chord’ feature that records not 

only the length, but also the orientation relationships of pairs of boundary pixels. A 

chordiogram that is the histogram of all chords of an object is used as the descriptor of an 

object.  

S. Abbasi [12] utilized curvature scale space (CSS) image to represent object boundary. In 

this approach, the original boundary (u-parameterized curve) of an object is smoothed by 

different  -variance Gaussian kernels. The number of curvature zero-crossing points of a 
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curve is inversely proportional to  . The image capturing the relationship between   and   is 

the CSS image of the object boundary. In DOS, since a target object is explicitly indicated 

based on its own nature, the description is more objective, than low-level priors and interactive 

markers. 

This paper presents a novel method to detect and segment objects given prior shapes, by 

globally optimizing an orientation-based objective function in a discretized parameter space. 

Each prior shape is described by a normalized set of bound vectors (i.e., the length of each 

bound vector is 1), whose initial points are discrete points on the boundary of an object model, 

and directions are identical to normal vectors of the corresponding initial points with respect to 

the object boundary. Initial points can be picked evenly or uniformly randomly on an object 

boundary. The original priors, however, are binary images of objects, so that they are much 

more intuitive and straightforward to produce. 

 

Continuous 

parameter 

space 
(a’) 

Fig. 1. The workflow of our method 

Discretized 

parameter 

space 

Model dataset 

(b) 

(c) 

(d) 

(a) 
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Derived sets of bound vectors, then, are normalized into the unit square, and stored into a 

database as shape models. The greater the quantity of bound vectors that is chosen, the higher 

the accuracy of the target shape that can be described. Furthermore, besides not storing whole 

images of exemplars, our prior descriptor is easier to apply transformation compared to [10], 

which stores binary images of all feasible transformed exemplars. Indeed, we need to store 

only one normalized set of bound vectors, for each aspect of an object.  

In a certain aspect, our object description method is similar to [12] which is primarily 

developed for the shape detection or identification of the object. While we use an ordered set 

of normal vectors of object boundary, [12] regarded curvature of the curve as the difference 

between adjacent tangent vectors. However, our approach relies on gradient orientation and 

magnitude while [12] worked on edge maps, where each curve in the derived edge map is 

considered as the shape of the object. It, then, is 'coded' in the form of CSS image. 

Consequently, CSS models of exemplars and CSS images are matched to find the closest pair. 

The problem of such methods is that edge map plays too large role, therefore it relies on the 

availability of exact edges in the image. However, in complex images, disrupted and merged 

edges are unavoidable. Also note that it targets on the identification of the shape, not the 

segmentation. 

Global optimization is utilized to search through a parameter space for the most suitable 

configuration that makes a certain discrete model approximately fit the target object in the 

image. The dependency of transforming elements (i.e. translation, rotation, and scaling) on 

super-pixels generated by [13]-[14] is considered to expeditiously discretize the parameter 

space. Moreover, we propose an orientation-based objective function to measure the fitness of 

the transformed discrete model, and target object in the image. The objective function is 

designed to be compatible with the discretization phase. We utilized the well-known 

branch-bound global optimization algorithm to search for a solution. The consequent 

transformed model is linked to form a closed curve, which may need refining, by applying the 

optimization [15] in a small number of iterations.  

The results tested on the PASCAL dataset [16] indicate that our method is robust at 

segmenting an object on a complex background, or with unclear boundary images. In the 

preliminary version of this paper [17], we proposed a simple, effective orientation-based 

object description, which is able to express arbitrary objects, together with an 

orientation-based objective function that measures the fitness of transformed object models 

and target objects in images. In addition, a robust solution space discretization was proposed.  

In this paper, a preprocessing step using a bilateral filter is utilized to remove noise, but still 

preserve edges in images. Moreover, we demonstrate the effectiveness of orientation, by 

comparing segmented results generated with, and without, an orientation factor. The results 

show that when orientation is not utilized, not only is the dominance of the maximum 

objective value compared to others less, but also an inaccurate transformed model is chosen.  

The next sections are organized as follows: our method is expressed in section 2; 

experiments are shown in section 3; and we make some conclusions in section 4. 

2. Proposed Method 

2.1 Overview 

The overall workflow of the proposed method is described briefly in Fig. 1. Records of object 

models that describe shapes of objects are stored in a model dataset. The super-pixels in Fig. 1 
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(b) are generated by over-segmenting the input image, using [13]-[14]. The quantity of 

super-pixels should be small enough to discretize parameter space efficiently; it should also be 

large enough to include as much boundary of the target object as possible. Those super-pixels 

form an uneven grid, on which the discretization phase depends. Originally, the parameter 

space (         ) , which indicates x-, y-translation, scaling and rotation, is continuous. 

However, it includes a lot of infeasible configurations, because of the digitization of the image 

and characteristics of the object shape. Based on boundaries of super-pixels and the constraint 

of an aspect ratio (in 2.5), the parameter space is discretized efficiently, by merely considering 

feasible configurations. A branch-bound algorithm is applied to find the most suitable 

transformation configuration (TC). The resultant transformed model is shown in Fig. 1 (c). 

The tiny cyan circles represent the approximation (i.e. the parameter ) in the objective 

function (in section 2.4). Finally, the segmentation result is achieved after discrete points of 

the consequent model are chained and refined by the level set method [15], in a small number 

of iterations (Fig. 1 (d)). 

The following subsections present in detail the preprocessing (2.2), the shape descriptor 

(2.3), orientation-based objective function (2.4), the discretization of parameter space (2.5), 

and a global optimization method (2.6). 

2.2 Preprocessing by Bilateral Filtering 

The object segmentation in section 2.5 relies on the oversegmentation of an input image. There 

are some factors that have negative influences on oversegmentation, which are noise and 

uncertain edges (i.e. where color or intensity changes). Moreover, the proposed object 

function, in section 2.4, utilizes gradient magnitude. Hence, removing uncertain edges 

enhances the fitness of the correct transformed model and target object in the image, compared 

to others. 

The bilateral filter is a local, non-iterative, and simple method, which combines both feature 

and spatial information in the form of weight [12]. When applying a shift-invariant low-pass 

domain filter to an image, we have 

 

 ( )    
  ∑  ( ) (   )    (1) 

 

where,    ∑  (   )   ,   is the neighboring region of  . Range filtering is defined as 

 

 ( )    
  ∑  ( ) [ ( )   ( )]     (2) 

 

where,    ∑  [ ( )   ( )]    . Combining geometric and photometric factors, we 

have the bilateral filter 
 

 ( )     ∑  ( ) (   ) [ ( )   ( )]     (3) 

 
where,   ∑  (   ) [ ( )   ( )]    . 

2.3 Orientation-based Object Descriptor 

The term ‘object’ is very general. It can be an arbitrary sort of visible thing, and can be found 

almost everywhere, in both the foreground and background of natural scene images. Despite 
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considering only the foreground of an image, we can realize a lot of objects existing 

individually or conjointly.  

The scene of a little boy wearing a yellow t-shirt and handling a balloon aside, for instance, 

has at least three objects: the whole body of the boy, the yellow t-shirt, and the balloon. While 

the balloon stays separate, the body and t-shirt overlap each other. The question is, which thing 

is the target one? In some sense of subjective human mind, the body may be the most attractive 

one to detect or segment. However, is detecting or segmenting the t-shirt or the balloon wrong, 

when clues of the goal object do not exist? NDOS together with the implications of the human 

mind, in fact, is able to cause the ambiguity. 

   Object segmentation can be seen as either binary image labeling, or boundary finding. Those 

two views have a mutual relationship, and result in distinguishing object and background by 

one or many closed contours defining the plane shape (from a certain aspect) of the object. 

Shape, therefore, is an important factor to detect and segment an object. Use of the distinctness 

of colors, or the discontinuity of intensity, is eventually able to identify object shape. Besides, 

given this sort of high-level prior, we explicitly define the target object of segmentation. The 

ambiguity mentioned above can be prevented.  

Binary images are used for inputs to generate the database of normalized models (sets of 

bound vectors) are binary images, in which white pixels belong to the object area, and black 

pixels are in the background. Then, the boundary of the object is produced from its connected 

components, using [18]. Not all points on an object boundary are utilized. A set of discrete 

points are established by sampling points on the boundary evenly, in terms of the quantity of 

intermediate points. In the simpler case, they can be picked randomly, with uniform 

distribution. A record corresponding to each boundary point is a bound vector, whose initial 

point is the boundary point, and its normal vector, with respect to the boundary of the object. 

Hence, it is a 4-element vector, with the first two elements for the initial point, and the last two 

ones for the related normal vector. The quantity of records is chosen identically for all 

exemplars, so that the evaluation taking place later is effective. The number of bound vectors 

is proportional to the captured fineness of object shape. All those tasks are done in the 

pre-processing phase, which is separate from the segmentation process. 

The use of normal vectors with discrete points provides an efficient and effective shape 

model for the object segmentation. It is simple in terms of computation and it can express 

significant structure of the object, using a set of bound vectors. Each bound vector consists of 

a boundary point, and its normal vector. The example in Fig. 2 expresses how bound vectors 

imply the structure of an object. In order to estimate the original circle, we can use 4 bound 

vectors, which imply a square, or 8 bound vectors, which imply an octagon. The more bound 

Fig. 2. Estimation of a circle by a square (a),  

and by an octagon (b) 

(a) (b) 
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vectors that are selected, the more accurate the estimation is. In other words, the number of 

bound vectors is proportional to the matching constraints.  

 

The orientation factor fortifies the accuracy of object matching. In other words, random 

points have a low probability of mismatch to the object model. For instance, let us describe a 

circle without using orientation, as in Fig. 3 (b). Not utilizing an orientation factor results in 

the mismatching of the model, as in Fig. 3 (c), and Fig. 3 (d). One of the factors reflecting a 

good object descriptor is the discrimination, i.e. it has to enhance the distinctness when a 

suitable transformed model fits and does not fit the target object in an image under a certain 

evaluation. In fact, such a factor is illustrated in Fig. 5, under our proposed objective function. 

Exemplars are normalized into the unit square, and lists of derived bound vectors are stored 

as a prior dataset. Each exemplar corresponds to an object shape from a particular view point. 

Such relationship between transformation of view point, and set of bound vectors, is expressed 

by the function   

 

                   

(         )    {(     ) (     )}       

 

where,   ,    are x- and y-translation,   is scale,   is rotating angle, (     ) is initial point, 

and (     ) is normal vector.  

The exemplars can be extended to 3D object model with the proposed object descriptor. A 

number of sampled view points are chosen from the 3D model to create plane shapes of that 

object, by projecting it into the planes orthogonal to the view directions. This descriptor is 

followed by a suitable evaluation function, and a simple and effective global optimization 

framework. 

 

 

Fig. 3. The description (b) without an orientation feature can 

mismatch with red shapes (c) and (d). 
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2.4 Orientation-based Objective Function 

To evaluate the fitness of each transformed model and target object in an image, an objective 

function is needed. The objective function maps sets of records, each of which consists of an 

initial point   and its normal vector   , into the set of real numbers 

 

        

  {      
}
      

  ( ) 

 

where,   is the number of bound vectors. To build the objective function, we rely on potential 

boundaries created by [13]. The over-segmentation process generating super-pixels not only 

establishes regions of homogenous-colored pixels, but also forms potential boundaries of 

objects (i.e. pixels are potentially the boundary of the target object). The objective f is to find 

which model and its appropriate TC most fit a certain combination of potential boundaries, in 

terms of position and orientation. f is expressed as 

 

 ( )  ∑
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   is the set of pixels belonging to potential boundaries,   is the radius of circles whose 

centers are   ’s,   is the quantity of bound vectors,    is the gradient magnitude of pixel  , 

and    is a threshold of gradient magnitude. 

The objective function f measures the summation of the averages of cosine similarity 

between each bound vector (      
) of the transformed model and bound vectors, whose 

initial points are in its neighboring circle. In other words, f evaluates the correspondences, in 

terms of the orientation between the bound vectors, and the orientation trend of pixels in their 

neighborhoods. Our objective is to find an exemplar, and its corresponding TC, such that the 

function f is maximized 

 

[     ]               (  
 )  (8) 

 

where,   is the index of the exemplar, and   is the index of the TC. 

The objective function   aims to not only match point-to-point, which was done in [12], and 

[20], but it also seeks for a suitable discrete structure, based on orientation. Therefore, random 

noise points are restricted, to affect the measuring. In Fig. 5, we list all feasible transforming 
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configurations (       ) (rotating angle   is fixed to 0) of the proper model of the red car, and 

their value computed by  . In order to enable the showing of the correlation of those variables, 

they are split into three 2-combinations. The maximum value of f in each combination is 

outstanding, in comparison with others. In addition, we demonstrate the need of orientation in 

f, by comparing how dominant the maximum value of f is, in the case of f with orientation, and 

without orientation. The comparison is exhibited in Fig. 6 and Fig. 7. 

2.5 Parameter Space Discretization 

The objective function can be given as follows by combining with the map   : 

 

 (  )   ({(      
)}

      
)   ( ( ))  (9) 

 

where,    . The actual variable of the objective function is the TC (         ). Because 

models capture object shapes in many aspects, it is not necessary to have two separate scaling 

parameters for x- and y-coordinates. Therefore, we use only one variable   , to indicate the 

scaling of the model. 

While the transforming elements are treated individually in [21], the optimal result can be 

achieved by globally optimizing over the entire parameter space. However, there is a tradeoff 

between them. A potential set of TCs is very huge, and it is infeasible to consider all of them. 

The purpose of this phase is to obtain a feasible set of TCs, which is much smaller than the 

potential set, based on the invariance of the aspect ratio given a certain rotating angle.  

Proposition 1 proves the invariance of aspect ratio of model when it is rotated by a fixed 

angle  . Due to result of oversegmentation, a model transformed by an appropriate TC can fit 

into the super-pixel set which forms target object in image. Therefore, we only consider 

maximum and minimum of (x, y) coordinates of super-pixels. Let T, R, L and B be the set of 

top points, right points, left points, and bottom points respectively. One 4-point record is 

feasible if it contains 4 points                     such that 
       

       
  is equal to a 

specified aspect ratio  ; and t, r, l, and b belongs to corresponding sides of derived rectangle 

(Fig. 4.b and Fig. 4.c). Feasible set consists of all feasible 4-point records. In order to find 

4-point records, proposition 2 firstly collects all feasible left-right pairs. Then, proposition 3 

finds corresponding top or left points. In practical, we merely use 3 points to determine a 

rectangle (i.e., left-right-top or left-right-bot). 

 
 

 Fig. 4. (a) 4 optimal points of a super-pixel; (b) a feasible 4-point record;  

(c) an infeasible 4-point record. 
 

(a) (b) (c) 
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Proposition 1 

Given a rotating angle  , the aspect ratio of the model that is transformed by arbitrary 

translation and scaling configuration (       ) is constant. 

 

For each rotating angle   [    ), translation and scaling are discretized into high potential 

sets of values. We suggest utilizing proposition 1, and the outcome of over-segmentation, to 

discretize the parameter space. Super-pixels (patches) generated by [13] form an uneven grid, 

which plays the role as the basis of discretization. We consider the uneven grid, to find 

potential configurations of translation and scaling. 

 

Definition 

Given a set of points rotated by a certain angle  . Let   be the constant aspect ratio of those 

points. A rectangle in the image is called a potential bounding box (with respect to  ), if its 

aspect ratio is equal to  . 

A list of all potential bounding boxes implies a list of translations, and a list of scaling 

values (with respect to  ). After being over-segmented by [13], the input image is subdivided 

into many super-pixels (patches), based on color distinctness and size constraint. The 

minimum and the maximum x- and the y-coordinates of super-pixels generate an uneven grid. 

By choosing a significant large number of super-pixels, the boundaries of all super-pixels can 

cover approximately the boundary of the target object. We let potential bounding boxes snap 

into the uneven grid, such that its minimum x-coordinate     
 corresponds to the minimum 

x-coordinate of super-pixel i, its maximum x-coordinate     corresponds to the maximum 

x-coordinate of super-pixel j, and its minimum y-coordinate    
 corresponds to the minimum 

y-coordinate of super-pixel  . In the following propositions, we temporarily ignore the 

constraint of image size (i.e. the circumstance in which potential bounding boxes exceed the 

range of the input image is temporarily accepted). Violating ones will be eliminated afterward. 

 

(a) 

Fig. 5: (a) x- and y-translation; (b) x-translation and 

scale; (c) y-translation and scale. 

(b) (c) 
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Proposition 2 

Ignore the constraint of image size. If there are two points  (     ) (     ) |  -  |  

 |  -  |, then    and    are the bounds of the x-coordinates of a certain potential bounding 

box. (  is the aspect ratio of the normalized model (with respect to angle  )). 

Another proposition following proposition 2, is to completely show how to search for 

potential bound boxes; as a result, configurations of translation and scaling corresponding to a 

rotating angle   are listed discretely. 

 

Proposition 3 

Ignore the constraint of image size.  

If  (     ) (     ) |  -  |   |  -  |, then   [              ]     (    ) 

belongs to the top or bottom of a certain potential bounding box (where           , 
      (     ), and       (     )). 

 

According to the constant aspect ratio (in proposition 1) when given a rotating angle, 

potential bounding boxes of transformed models in the image are listed discretely, due to 

proposition 2 and proposition 3. Since the measuring of orientation in an objective function 

regards an  -radius circle, the set of y-coordinate values in proposition 3 can be enumerated as 

 

       
     

   
        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅    (10) 

 

Also, it does not require having all partial edges of the target object. The necessary portions 

are the left, the right, and the top of the target object. For that reason, we choose 

over-segmentation [13]-[14], rather than Canny [18]. 

We utilize the branch-bound algorithm to find the global optimum in the discretized 

parameter space. In Fig. 5, based on the color map, in which values corresponding to the 

colors are increasing from left to right, blue areas indicate ignored sets of transforming 

configurations that are implicitly removed by the propositions, and the constraint of image size. 

It shows that our propositions are effective in discretizing the parameter space, by disregarding 

non-potential transforming configurations. In the combination of x-translation and scale (Fig. 

5 (b), there exist huge sets of ignored configurations. It is much more than the ones in Fig. 5 (a) 

and Fig. 5 (c), because the aspect ratio of the target object is small (its width is larger than its 

height). 

2.6 Branch-Bound for Global Optimization 

A global optimization is taken to find the optimal solution for the objective function in the 

discretized parameter space. Among several techniques for the global optimization, such as 

graph-cut [4], branch-bound [22], and space mapping [22], branch-bound is chosen because of 

its efficiency and capability. Branch-bound is a specialized discrete programming technique 

that provides a strategy to avoid full search through the entire solution space [22]. In the 

proposed object segmentaion scheme, the solution space is a 4-D space of transformations (i.e. 

rotation, scale, x-, and y-translation). Different from [10], the objective of our method is to 

build based on discrete sets of bound vectors, and to evaluate the fitness based on the matching 

of boundary structure (position and orientation), rather than pixel labels. 
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Branch-bound is a well-known algorithm in discrete programming. It has the ability to get 

rid of exhaustively searching the whole solution space, by fathoming sub-spaces that are not 

feasible to contain the optimal solution. The two main factors of the branch-bound algorithm 

are a branching (subdivision) strategy, and a bounding function. The discretized parameter 

space is recursively divided into sub-spaces, each of which has a bounding value, reflecting its 

priority for being chosen. In our maximization problem, a bounding function   is designed to 

be an upper bound of the function f, such that 

 

  ( )   ( )    

  ̂(  )   ̂(  ) if       

        ̂( )   ( )  (   ) ̂( ), if   is a ‘leaf’ of a searching tree. 

 

where,  ̂( ) is an upper bound of   in sub-space  :        (  )   ̂( )   ( )    
  . Thus,   tends to approach f from above, when we branch the discretized parameter space 

progressively. Sub-spaces that have the largest bounds in comparison with others in the same 

level are eliminated, together with their children. The branching process can be terminated, if 

  is close enough to  . That is how the branch-bound algorithm can ease the size of the 

solution space. 

The function   is supposed to be more straightforward to compute, compared to  . 

Consider the objective function 

 ( )  ∑
 

   
  

∑  ( ) (
    

 
) |   (   
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∑  (  )  (
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 ∑        [ (  )  (
    

 
)] 

     ( )   . (11) 

 

The first inequality is for the property of the cosine function; the second is proven in the 

following proposition.  

 

Proposition 4 

∑
 

   
  

∑  (  )  (
    

 
) 

 
     ( )  

 

Hence,   is the upper bound of f for all TCs. It counts the quantity of initial points (of the 

transformed model) that are close to an arbitrary potential boundary. The orientation factor is 

relaxed in  . At the same level, if  ̂(  )   ̂(  ),    has more chance to be fathomed, and 

   has more chance to be picked soon. 

The function   can also be viewed as 

 (   )  ∑         ⌊        ⌋ 
     (12) 

where,     {          }  and ⌊ ⌋ is the predicate  function that is 1, if the condition is 

true, and 0, if otherwise.  ̂( ) can be calculated by choosing   , and loosening the radius of 

the neighboring area of boundary points, such that  ̂( )   (      )   (   )    (see 

[20]). 

Even though the orientation-based objective function f is quite straightforward, it takes 
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more time to compute, compared to  . From the view of (9),   simply counts the quantity of 

the intersect sets of a small ball  (    ) and    . Thus, evaluating   is simpler and faster. In 

practice, it is about 10 times faster than evaluating  . 

The branch-bound algorithm is applied for each exemplar, whose details can be found in 

[17].  

2.7 Refinement 

After applying the branch-bound algorithm to the discretized parameter space, we obtain the 

model and its corresponding TC that generates the fittest discrete ‘skeleton’ to the boundary of 

the target object. A continuous contour is created, by orderly chaining the resultant set of 

points. Because of the approximation (i.e. measuring the fitness of orientation in an  -radius 

circle) of the objective function, the contour is not completely accurate. In order to refine it, we 

utilize [15] to steadily deform the contour to a high gradient magnitude curve in a small 

number of iterations. When working on a complex background and/or low contrast images, the 

number of iterations should be very few, so that the structure of the resultant transformed 

model is preserved. 

3. Experimental Results 

The proposed method was implemented in Matlab version 7.11.0 (2010b). The configuration 

of the testing system is an Intel®  Core™ i5-2500 CPU @ 3.30GHz 3.30GHz, and 4GB RAM. 

For evaluation, PASCAL  and ETHZ datasets [16,24 ] are used, which provide both sample 

images and ground truths. Models (exemplars) are generated by extracting edges in ground 

truth images, then picking a specified number of boundary points, and collecting their normal 

vectors. The size of a model is chosen to be one third of the longest boundary. They are then 

normalized into the unit cube, and stored.  

Super-pixels are generated using the method in [13], and the number of super-pixels is set to 

200, which is large enough to cover most of the target object boundary. Then, adjacent 

Table 1. Some examples to compare our method to the level set based method [15], GrabCut [2], and 

saliency based method [7]. 
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super-pixels that are similar in color (i.e. the difference of means of two adjacent ones is 

significantly small, compared to the sum of their standard deviations) are merged together.  

The branch-bound algorithm is implemented, based on the best-first search. In contrast, the 

one having the smallest upper bound has the highest chance to be subsequently considered. 

The radius   = 2. The effectiveness of the refinement step is dependent on how different the 

boundary between the target object and background is. We only run from 3 to 8 iterations of 

[15]. 

Our method is robust at detecting and segmenting objects, especially rigid, because it relies 

on whole instances of object shape, and solves the problem globally. However, the payoff is 

that it needs many models (exemplars) of many types of objects and aspects. The average 

run-time for each exemplar is about 11 seconds. The relaxation variable   of the objective 

function decides how much variation of object, in terms of shape in image compared to models, 

the method can handle. Hence, rigid objects require less exemplars, than non-rigid objects do.  

Firstly, we demonstrate results tested on PASCAL dataset [16]. Table 1 shows some 

improvements of our method, compared to the level set based method (LS) [15], GrabCut [2] 

(not including interactive foreground and background editing), and the global contrast based 

method (GC) [7], due to its shape-based property. Initials of the LS are rectangles inside those 

target objects. In those examples, the boundary of object and background is not clear; as a 

result, they run 1410 iterations, without converging. The GC is strong at segmenting images in 

which the contrast between object and background is clear (e.g. the red car, and the yellow car 

in Table 1. 

To evaluate the essence of orientation in the proposed objective function, we regard how 

dominant the maximum of  , which corresponds to the resultant configuration, is in 

comparison with others, in two opposite cases. In the first case, we use the proposed function 

(i.e.     ), and the second case is the same, except for getting rid of the orientation. 

 

      ( )  ∑
 

   
  

∑ [ ( ) (
    

 
)]      

      (13) 

 

Only correct models and appropriate rotating angles of target objects are considered; 

therefore, translation and scaling vary. Values of    and    are computed for a discretized set 

  of translations and scales. The dominance is measured by  

Fig. 6. Above – Segmentation using    ; below – Segmentation using   . 
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∑ [         ( )]      (14) 

 

where,   {   }.  

According to Fig. 7 and the tested images, the percentage differences  ̅ between    and    

of those cases are 21.36%, 30.15%, 30.34%, and 47.67%. The difference  ̅ increases, when 

the background is more complicated. The reason is that there are many noise points in complex 

background images (e.g., the silver and the yellow cars in Table 1 that have much influence on 

   (not including orientation). Thus,    with orientation measuring can enhance the solution 

stronger than    does. 

 
 

Due to the fact that our approach finds the best TC for a certain model to fit into target object, 

improper TC may result in very low precision and recall. Therefore, there is a big gap between 

two major regions in Fig. 8. In 100 car images of PASCAL 2005, 82% of images exceeds 75%  

in terms of precision and recall. The average precision is 75.5%, and the average recall is 

73.6%. Precision and recall are computed by following formula. 

 

Fig. 8. Precision and recall of car images in PASCAL 2005 dataset. 

Fig. 7. Values of   , and    of images in Fig. 6. 
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Fig. 9.  Bottles and giraffes in ETHZ dataset segmented by our method. Images on the left 

of each column are transformed models with discrete points and their h-radius circles. 

Images on the right of each column are final results. 
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The source code of [10] is from the author’s homepage. Its runtime varies from 29 to 102 

seconds depending on image characteristic. The outputs of Chordiogram are from [11]. 

 

 

 

 

 

Table 2. Some examples to compare our method to branch-mincut [10], and Chordiogram [11]. 

Fail 
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Table 3. Run time of branch-mincut [10] with images in the ETHZ dataset. 

Images Size Runtime (s) 

tobias 327x495 77.9 

spiral 375x500 62.75 

mino 500x353 29.94 

brookfield 500x375 55.01 

blue3 375x500 102.44 

 

          
   

     
 (15) 

       
  

     
 (16) 

 

where    is the overlapping area of transformed model and target object,    is the area 

belonging to target object but not transformed model, and    is the area belonging to 

transformed model but target object. 

Besides, our method achieves considerable result when tested on ETHZ dataset (Fig. 9). 

Bottle class, rigid object, and giraffle class, non-rigid object, are chosen  for evaluation. [10] 

inspired us in utilizing global optimization, while [11] raised the good idea of relying on 

superpixels.However, different from [11], which regards superpixels in the aspect of regions, 

our method concerns about seeking for partial superpixel boundaries which constitute a whole 

target object. We compared results of these 3 methods in Table 2.  

4. Conclusions 

A novel method for the predefined object segmentation was presented, by using global 

optimization in a discretization parameter space. By demonstrating the order of transformation 

elements with the derived constraints and super-pixels, the parameter space is discretized. An 

orientation-based objective function, which is capable of measuring the fitness of transformed 

models and objects, was proposed. The robustness of the orientation-based objective function 

turned out to overcome situations in which some partial edges are lost. The reason is that it 

recognizes an object as a whole instance. Our method is able to detect and segment objects, 

especially rigid and multi-color objects, because it relies on the whole instance of an object 

shape, and solves the problem globally. 
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