• Title/Summary/Keyword: Discrete Manufacturing System

Search Result 102, Processing Time 0.026 seconds

Discrete Event Simulation and Its Application to Railway Maintenance Evaluation System (철도차량 유지보수 장비의 Discrete Event Simulation 기반 기초 성능평가 및 적용방안 연구)

  • Mun Hyeong-Seok;Jang Chang-Du;Ha Yun-Seok;Jo Yeong-Cheon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.331-336
    • /
    • 2005
  • A lot of manufacturing knowledge and method have applied to increase manufacturing efficiency in industry field. DES(Discrete Event Simulation) is one of solution to deal with manufacturing problems in factory. Beginning of research, old maintenance system of KNR ( Korea National Railroad) and its technical problems are basically investigated. KNR has maintained railway vehicle with their own solution based on experience. Very advanced railway vehicles such as KTX (Korea Train Express) and TTX(Tilting Train Express) will be difficult to maintain with their old maintenance method. In order to apply knowledge of DES, maintenance field of railway must be considered. Imaginary maintenance machine are selected to variable of DES. Maintenance capability of each machine will be evaluated base on imaginary data from imaginary machine. The machine could be very expensive as well as difficult to replace. Target of research is minimization of number of machine in railway workshop. So basic knowledge of discrete event simulation is introduced. Then five essential stages of discrete event simulation are provided. Each maintenance case defined as event. Each event is discrete and simulated base on different case such as one maintenance line with one machine and one maintenance line with two machines in railway workshop. simple maintenance method, discrete event simulation, will be come out very powerful in complicate maintenance system and will be helpful to reduce maintenance cost as well as maintenance labor.

  • PDF

Discrete event systems modeling and scheduling of flexible manufacturing systems

  • Tamura, Hiroyuki;Hatono, Itsuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1564-1569
    • /
    • 1991
  • In this paper we describe Flexible Manufacturing Systems (FMS) using Petri nets, since Petri nets provide a powerful tool for modeling dynamical behavior of discrete concurrent processes. We deal with off-Line and on-Line rule-based scheduling of FMS. The role of the rule-base is to generate appropriate priority rule for resolving conflicts, that is, for selecting one of enabled transitions to be fired in a conflict set of the Petri nets. This corresponds to select a part type to be processed in the FMS. Towards developing more Intelligent Manufacturing Systems (IMS) we propose a conceptual framework of a futuristic intelligent scheduling system.

  • PDF

Workload Allocation Methods in Discrete Manufacturing Systems:Model and Optimization

  • Yingwen, Zheng
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1362-1366
    • /
    • 2003
  • Workload programming is allocating suitable workloads of production process according to the needs of products, which would minimize the total cost of both work and stock under some constraint conditions. In this paper, a production process flow chart of discrete manufacturing is presented by a Petri net, and the optimization model of workload-stock is established. An approach of the optimal workloads is provided by means of the integer matrix theory. An example is given to verify this method.

  • PDF

Modeling and Simulation of Flexible Control Structures for Automated Manufacturing Systems (자동화된 생산 시스템의 유연한 제어 구조의 모델링과 시뮬레이션)

  • Hwang, Hee-Soo;Kim, Hyun-Ki;Woo, Kwang-Bang
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.439-443
    • /
    • 1987
  • This paper presents a method for constructing model of manufacturing processes for simulation and design of the discrete control logic. The models represent the discrete vent evolution of the system as well as features of the underlying continues processes, for applications such as discrete parts manufacture and assembly, the process is decomposed into operations and for each operation the required resources and associated discrete resource slates are Identified. The structure of the discrete-level control is modeled by modified Perti nets which are synthesized from single resource activity cycles. Construction of nets provides discrete control logic with guaranteed properties based on extended Petri nets theory, for illustration, the proposed method is applied to the high-level discrete control of a two-robotic assembly cell.

  • PDF

Application of fuzzy Petri nets for discrete event system control and monitoring (이산사건 시스템 제어 및 모니터링을 위한 퍼지 패트리네트 응용)

  • 노명균;홍상은
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.403-406
    • /
    • 1997
  • This paper presents a Petri net approach for the control and monitoring of discrete event system. The proposed model is fuzzy Petri nets based on the fuzzy logic with Petri nets and the hierarchy concept. Fuzzy Petri nets have been used to model the imprecise situations which can arise within automated manufacturing system, and also the hierarchy concept allow to handle the refinement of places and transition in Petri nets model. These will form the foundation of a simulator-tool with manipulation interface for application of fuzzy Petri nets.

  • PDF

A Simulation Model for the performance of process using SIMAN Language in Flexible Manufacturing Systems (유연생산체제에서 SIMAN을 이용한 공정의 수행도 평가를 위한 시뮬레이션 모형)

  • 강영식;함효준
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.44
    • /
    • pp.153-161
    • /
    • 1997
  • This paper has proposed the modelling by simulation in order to evaluate the performance of process through discrete event simulation using SIMAN language in flexible manufacturing systems. The production system is assumed to be a job shop type of system under the batch production of discrete products. In this paper, the input data is the workstation(process) time, the number of workstation(process), a probability distribution, the number of simulation runs. Also, transient period is considered. In the case study, this paper deals with three products in real flexible manufacturing systems. Finally, a number of simulation runs were executed under different experimental conditions to obtain preliminary statistics on the following performance measures: operating rate of facility and average system operating rate, transient period, central processing unit, average system throughput, and average waiting time in queues.

  • PDF

New Modularization Method to Design Supervisory Control of Automated Laboratory Systems (자동화 시스템의 관리제어 설계를 위한 새로운 모듈화 기법)

  • Jung, Taeyoung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.38-47
    • /
    • 2014
  • This paper describes the application of discrete event systems theory to the design of an automated laboratory system. Current automated laboratory systems typically consist of several interacting processes that must be carefully sequenced to avoid any possible process conflicts. Discrete Event Systems (DES) theory and Supervisory Control Theory (SCT) can be applied together as effective methods of modeling the system dynamics and designing supervisory controllers to precisely sequence the many processes that such systems might involve. Classical approaches to supervisory controller design tend to result in complex controller structures that are difficult to implement, maintain, and upgrade. In this paper, a new approach to designing supervisory controllers for automated laboratory systems is introduced. This new approach uses a modular controller structure that is easier to implement, maintain, and upgrade, and deals with "state explosion" issues in a novel and efficient way.

Simulation for Shop Floor Control

  • Cho, Hyunbo
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1996.05a
    • /
    • pp.15-15
    • /
    • 1996
  • A shop floor control system (SFCS) is the central part of a CIM system used to control the activities of several pieces of manufacturing equipment (e.g., NC machines, robots, conveyors, AGVs, AS/RS). The SFCS receives orders and related process plans, and then performs selecting a specific process routing, allocating resources, scheduling the workpieces, downloading the processing instructions (e.g., RS-274 instructions for NC machines, VAL II programs for robot), monitoring the progress of activities, detecting and recovering from errors, and preparing reports on the status of the manufacturing system. Simulation has been utilized in discovering control policies used for resolving shop floor be control problems such as resource contentions, part dispatching, deadlock. The simulation model must be designed to respond to real-time data coming from a shop floor. However, to rapidly build a realtime simulation model of SFCS cannot be easily accomplished. This talk is to address an automatic program generator of discrete event simulation model for shop floor control from process plans and resource models. The program generator is capable of constructing complete discrete simulation models for multi-product and multi-stage flexible manufacturing systems.

  • PDF

Design and Implementation of Supervisors to Control of a CIM Testbed (CIM Testbed의 제어를 위한 Supervisor의 설계와 구현)

  • Song, Tae-Seung;Lee, Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.6
    • /
    • pp.478-485
    • /
    • 2000
  • A discrete event systems (DES) is a physical system that is discrete in time and state space, asynchronous (event rather than clock-driven), and in some sense generative(or nondeterministic). This paper presents the design of fifteen modular supervisors to control an experimental CIM testbed. These supervisors are nonblocking, controllable and nonconflicting. After verification of the supervisors by simulation, the supervisors for AGV system have been implemented to demonstrate their efficacy.

  • PDF

Introduction of Discrete Event Simulation and Its Application to Railway Maintenance System (Discrete Event Simulation의 차량 유지보수체계의 적용을 통한 유지보수 효율향상 연구)

  • Mun Hyung Suk;Jang Chang Doo;Ha Yun Sok;Cho Young Chun
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.48-57
    • /
    • 2005
  • A lot of manufacturing knowledge and method have applied to increase manufacturing efficiency in industry field. DES(Discrete Event Simulation) is one of solution to deal with manufacturing problems in factory. Beginning of research, old maintenance system of KNR ( Korea National Railroad) and its technical problems are basically investigated. KNR has maintained railway vehicle with their own solution based on experience. Very advanced railway vehicles such as KTX (Korea Train Express) and TTX(Tilting Train Express) will be difficult to maintain with their old maintenance method. In order to apply knowledge of DES, maintenance field of railway must be considered. Imaginary maintenance machine are selected to variable of DES. Maintenance capability of each machine will be evaluated base on imaginary data from imaginary machine. The machine could be very expensive as well as difficult to replace. Target of research is minimization of number of machine in railway workshop. So basic knowledge of discrete event simulation is introduced. Then five essential stages of discrete event simulation are provided. Each maintenance case defined as event. Each event is discrete and simulated base on different case such as one maintenance line with one machine and one maintenance line with two machines in railway workshop. simple maintenance method, discrete event simulation, will be come out very powerful in complicate maintenance system and will be helpful to reduce maintenance cost as well as maintenance labor.

  • PDF