• Title/Summary/Keyword: Discharging

Search Result 1,177, Processing Time 0.029 seconds

Functional Finishing of Nonwoven Filter for Dust-proof/Medical Masks by Corona Discharging Treatment (코로나 방전에 의한 방진/의료용 마스크 여과재의 기능화 가공)

  • Hong, Young-Ki
    • Textile Coloration and Finishing
    • /
    • v.25 no.3
    • /
    • pp.232-239
    • /
    • 2013
  • In this study, 25gsm melt-blown polypropylene nonwoven for dust-proof/medical masks was finished by the corona discharging treatment. The influence of corona discharging parameters on the filtration efficiency was investigated. Several parameters such as discharging voltage, discharging speed, distance to discharging wire and configuration of discharging system had an effect on filtration efficiency, while the parameters had no effect on breathing resistance. Optimum corona discharging conditions are as follows: Wires were installed on the upper part of the nonwoven and paper pipe was installed on the lower part of the nonwoven having a distance of 5cm. The sequence of wire voltages was +60 kV, +60 kV, 0, -60 kV, and -60 kV. The discharging voltage and speed were 60 kV and 30m/min respectively. The nonwoven treated by corona discharging at the optimum condition showed a filtration efficiency of 80% or more, which is suitable for dust-proof/medical masks.

Thermal performance of the spherical capsule system using paraffin as the thermal storage material (파라핀 축열재를 사용한 구형캡슐 시스템의 전열성능)

  • Cho, K.N.;Choi, S.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.354-363
    • /
    • 1997
  • The purpose of the present work is to show the best thermal storage material and the sensitivity of the parameters on the thermal performance by experimentally investigating the effects of the parameters on the thermal performance of the spherical capsule system using paraffins superior to the commercial one. The paraffins were n-Tetradecane and the mixture of n-Tetradecane 40% and n-Hexadecane 60%. The experimental parameters were the Reynolds number of 8, 12, and 16 and the inlet temperature of-7, -4, -1, and $2^{\circ}C$. The charging and the discharing time, the dimensionless thermal storage amount, and the averge heat transfer coefficient in the tank were obtained by utilizing the local temperature variation in the tank. The local charging and discharging time in the tank was axially and radially different a lot. The effects of the inlet temperature on the charging and the discharging time were larger during the charging process than during the discharging process, but the effects of the Reynolds number on the charging and the discharging time were in reverse order. The paraffins were better by 11~72% than the water with the inorganic material in the charging time aspect, but no difference in the discharging time aspect. The effects of the Reynolds number on the dimensionless thermal storage amount were smaller than the effects of the inlet temperature during the charging process, but in reverse order during the discharging process within the working range of the experimental parameters. The effects of the inlet temperature and the Reynolds number on the average heat transfer coefficient were larger during the discharging process than during the charging process. The average heat transfer coefficient for the paraffins was larger by 40% maximum than that for the commercial material during the charing and the discharging process.

  • PDF

Study on BESS Charging and Discharging Scheduling Using Particle Swarm Optimization (입자 군집 최적화를 이용한 전지전력저장시스템의 충·방전 운전계획에 관한 연구)

  • Park, Hyang-A;Kim, Seul-Ki;Kim, Eung-Sang;Yu, Jung-Won;Kim, Sung-Shin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.547-554
    • /
    • 2016
  • Analyze the customer daily load patterns, be used to determine the optimal charging and discharging schedule which can minimize the electrical charges through the battery energy storage system(BESS) installed in consumers is an object of this paper. BESS, which analyzes the load characteristics of customer and reduce the peak load, is essential for optimal charging and discharging scheduling to save electricity charges. This thesis proposes optimal charging and discharging scheduling method, using particle swarm optimization (PSO) and penalty function method, of BESS for reducing energy charge. Since PSO is a global optimization algorithm, best charging and discharging scheduling can be found effectively. In addition, penalty function method was combined with PSO in order to handle many constraint conditions. After analysing the load patterns of target BESS, PSO based on penalty function method was applied to get optimal charging and discharging schedule.

Heat Transfer Characteristics of the Spherical Capsule Storage System Using Paraffins

  • Cho, Keum-Nam;Choi, S. H.
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.113-123
    • /
    • 1998
  • The present study is to investigate the effect of experimental parameters on the heat transfer characteristics of a spherical capsule storage system using paraffins. N-Tetradecane and mixture of n-Tetradecane 40% and n-Hexadecane 60% were used as paraffins. Water with inorganic material was also tested for the comparison. The experimental parameters were varied for the Reynolds number from 8 to 16 and for the inlet temperature from -7 to 2$^{\circ}C$. Measured local temperatures of spherical capsules in the storage tank were utilized to calculate charging and discharging times, dimensionless thermal storage amount, and the average heat transfer coefficients in the tank. Local charging and discharging times in the storage tank were significantly different. The effect of inlet temperature on charging time was larger than that on discharging time, but the effect of Reynolds number on charging time was smaller than that on discharging time. Charging time of paraffins was faster by 11~72% than that of water with inorganic material, but little difference of discharging time was found among them. The effect of Reynolds number on the dimensionless thermal storage was less during charging process and more during discharging process than the effect of inlet temperature. The effect of the inlet temperature and the Reynolds number on the average heat transfer coefficient of the storage tank was stronger during discharging process than during charging process. The average heat transfer coefficients of the spherical capsule system using paraffins were larger by 40% than those using water.

  • PDF

A Study on Stable Operation of Li-ion Battery Charging/Discharging System (Li-ion 배터리 충/방전 시스템의 안정적 운영에 관한 연구)

  • Yeo, Sung-Dae;Han, Cheol-Kyu;Cho, Tae-Il;Lee, Kyung-Ryang;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.4
    • /
    • pp.395-402
    • /
    • 2016
  • When the operation of battery is converted at charging and discharging system based on a DC micro grid, the voltage is fluctuated. And excessive voltage fluctuation could cause damage or failure of charging and discharging equipment. Therefore, in this paper, we studied the operating schedule of the charging and discharging system based on the DC micro grid and a design point of the capacitor which was able to reduce the voltage fluctuation. A result of computer simulation showed that when a fluctuation-reducing capacitor which had an initial value of 600V/35mF was applied at the charging and discharging system based on a DC micro grid which was operated with three charging battery sets and five discharging battery sets, voltage fluctuation by charging and discharging operation was reduced by about 63.3%. Furthermore, voltage fluctuation which occurred when initial network voltage was stabilized was reduced by about 73%.

Optimal Charging and Discharging for Multiple PHEVs with Demand Side Management in Vehicle-to-Building

  • Nguyen, Hung Khanh;Song, Ju Bin
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.662-671
    • /
    • 2012
  • Plug-in hybrid electric vehicles (PHEVs) will be widely used in future transportation systems to reduce oil fuel consumption. Therefore, the electrical energy demand will be increased due to the charging of a large number of vehicles. Without intelligent control strategies, the charging process can easily overload the electricity grid at peak hours. In this paper, we consider a smart charging and discharging process for multiple PHEVs in a building's garage to optimize the energy consumption profile of the building. We formulate a centralized optimization problem in which the building controller or planner aims to minimize the square Euclidean distance between the instantaneous energy demand and the average demand of the building by controlling the charging and discharging schedules of PHEVs (or 'users'). The PHEVs' batteries will be charged during low-demand periods and discharged during high-demand periods in order to reduce the peak load of the building. In a decentralized system, we design an energy cost-sharing model and apply a non-cooperative approach to formulate an energy charging and discharging scheduling game, in which the players are the users, their strategies are the battery charging and discharging schedules, and the utility function of each user is defined as the negative total energy payment to the building. Based on the game theory setup, we also propose a distributed algorithm in which each PHEV independently selects its best strategy to maximize the utility function. The PHEVs update the building planner with their energy charging and discharging schedules. We also show that the PHEV owners will have an incentive to participate in the energy charging and discharging game. Simulation results verify that the proposed distributed algorithm will minimize the peak load and the total energy cost simultaneously.

A Study on the Real-time Micro Control of WEDM Process for the Improvement of Discharging Stability (WEDM 프로세스의 방전 안정성 향상을 위한 실시간 미세제어에 관한 연구)

  • Kwon Shin;Nam Sung-Ho;Yang Min-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.27-36
    • /
    • 2005
  • Some studies have shown that unstable factors are inherent in WEDM process, causing the instability of the discharging pulse to reach about 40∼60% in normal machining. Transient stability is an important subject in WEDM process since there is a close relationship between stability and machining performance, such as the characteristics of a machined surface, machining speed and problem of instability like wire rupture phenomenon. Among the many machining parameters affecting WEDM machining state, three specific parameters (Vr, Ip, off time ) are major controllable variables that can be applied in transient stability control. And, this research investigates the implementation and analysis of real-time micro control of the discharging stability of WEDM (Wire Electric Discharge Machining) process.

Effect of Discharging Process on Electrical and Optical Properties in Charged Particle-type Reflective Electronic Display

  • Kim, Young-Cho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.333-337
    • /
    • 2014
  • In this study, the use of a discharging process for charged particles is proposed to achieve an ideal electrical balance or neutralization and to improve the electrical and optical properties of a reflective electronic display. Here, negatively charged particles (white) and positively charged particles (black) are used. The q/m (charge per mass for a particle) values of the black and white particles are $+4.5{\mu}C/g$ and $-4.5{\mu}C/g$, respectively. We compared the movement of the charged particles by varying their discharging time. Stable movement of the charged particles is obtained with an appropriate discharging time, which resulted in improvements of the optical properties of the panel.

Study on the Thermal Storage Characteristics of a Multi-capsule type LTES System -Analysis for Heat Charging and Discharging Process for Water Flow- (다관형 잠열축열장치의 축열특성연구 -물을 매체로 한 축열 및 방열과정 분석-)

  • Kim, Y.B.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.1
    • /
    • pp.62-69
    • /
    • 1994
  • This study was designed to seek information on the heat charging and discharging characteristics of a multi-capsule type LTES(Latent Heat of Fusion Thermal Energy Storage) system, and especially prediction equation of outlet water temperature from the system. During heat charging process, the water temperature in the LTES tank increased very slowly in comparison with a predicted one and was kept near the melting point of the PCM for about 25 minutes. During heat discharging process, the latent heat discharging period of the outlet water temperature became longer as the inlet water temperature became higher and/or mass flow rate became lower. The dimensionless temperature of the outlet water was predicted by linking three equations of ${\theta}=1.1Exp(-{\tau}/0.82)$, ${\theta}=-0.06{\tau}+0.3$, ${\theta}=0.8Exp(-{\tau}/1.4)$ ($r^2{\leq}0.88$) depending on discharging period regardless of mass flow rates on the case of the inlet water temperature at $21.5^{\circ}C$.

  • PDF

Design and Development of a Public Waste Battery Diagnostic Device

  • Kim, Sang-Bum;Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.281-286
    • /
    • 2022
  • In this study, design of an intuitive internal resistance diagnostic device is to diagnose the residual capacity and aging of the battery regardless of the model and the internal protocol of the waste battery through the method of measuring the internal resistance of a waste battery. In this paper, charging and discharging were continuously performed with 2A charging and 5A discharging in order to secure data on impedance changes that may occur in the charging and discharging process of various methods. As a result of the final experiment, it was confirmed that the impedance change occurred during charging and discharging, and the amount of change increased as the charging/discharging C-rate increased. In addition, it was confirmed that the waste battery aged or abnormal cell had a large change in the impedance value.