• 제목/요약/키워드: Discharge.charge-time

검색결과 242건 처리시간 0.026초

Effect of Additional Pulse to Remove the Sulfate Film on the Charging Capacity in the Industrial Lead-Acid Battery (극판 피막 분해용 펄스파가 산업용 연축전지의 충전용량에 미치는 영향)

  • Choi, Kwang-Gyun;Yoo, Ho-seon
    • Plant Journal
    • /
    • 제16권4호
    • /
    • pp.40-44
    • /
    • 2020
  • In this study, after supplying a pulse wave to the 2 V Industrial Lead-Acid Battery electrode plate and repeating the charging and discharging, the discharging time per voltage was analyzed. According to the result of experiment, while the lead-acid Battery that a pulse wave is not supplied decreased about 18 % of discharging capacity than the beginning, the lead-acid Battery that a pulse wave is supplied decreased a little amount much lower than 18 %, of discharging capacity and recorded the 0.56 % decrease, at a minimum, from discharging capacity at the 20 kHz frequency. This means that the sulfate on electrode plate is detached and the positive and negative charge transfer is highly activated at the 20 kHz frequency

Design of Simulated Photovoltaic Power Streetlight for Education using Renewable Energy Utilization and Storage Function (신재생에너지 활용 및 저장기능을 이용한 교육용 모의 태양광발전 가로등 설계)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제21권2호
    • /
    • pp.137-142
    • /
    • 2021
  • A Photovoltaic power streetlight is a system that uses solar energy to charge a secondary battery and then uses it for night lighting through a lamp, and can be configured as a standalone or grid-connected type by installing an LED streetlight at the load end. The energy generated through the solar cell module can be charged to the secondary battery through the charge/discharge control device, and then the LED street light can be turned on and off by comparing the power generation voltage and the charging voltage according to the monitoring of solar radiation, or by setting a specific time after sunset or sunrise. Based on these contents, this paper designed and manufactured a simulated solar power streetlight for education using new and renewable energy utilization and storage functions. Using these educational equipment, students can 1) understand the flow of energy change using renewable energy including sunlight as electric energy, 2) understand new and renewable energy, and cultivate basic design and manufacturing application power of related products, 3) The use of new and renewable energy through power conversion and strengthening of practical training and analysis through hardware production can be instilled.

Effect of Relative Humidity, Disk Acceleration, and Rest Time on Tribocharge Build-up at a Slider-Disk Interface of HDD (HDD에서 상대습도, 디스크 가속도, 정지시간이 슬라이더-디스크 인터페이스의 마찰대전 발생에 미치는 영향)

  • Hwang J.;Lee D.Y.;Lee J.;Choa S.H.
    • Tribology and Lubricants
    • /
    • 제22권2호
    • /
    • pp.59-65
    • /
    • 2006
  • In hard disk drives as the head to disk spacing continues to decrease to facilitate recording densities, slider disk interactions have become much more severe due to direct contact of head and disk surfaces in both start/stop and flying cases. The slider disk interaction in CSS (contact-start-stop) mode is an important source of particle generation and tribocharge build-up. The tribocharge build-up in the slider disk interface can cause ESD (electrostatic discharge) damage. In turn, ESD can cause severe melting damage to MR or GMR heads. The spindle speed of typical hard disk drives has increased in recent years from 5400 rpm to 15000 rpm and even higher speeds are anticipated in the near future. And the increasing disk velocity leads to increasing disk acceleration and this might affect the tribocharging phenomena of the slider/disk interface. We investigated the tribocurrent/voltage build-up generated in HDD, operating at increasing disk accelerations. In addition, we examined the effects with relative humidity conditions and rest time. We found that the tribocurrent/voltage was generated during pico-slider/disk interaction and its level was about $3\sim16pA$ and $0.1\sim0.3V$, respectively. Tribocurrent/voltage build-up was reduced with increasing disk acceleration. Higher humidity conditions $(75\sim80%)$ produced lower levels tribovoltage/current. Therefore, a higher tribocharge is expected at a lower disk acceleration and lower relative humidity condition. Rest time affected the charge build-up at the slider-disk interface. The degree of tribocharge build-up increased with increasing rest time.

Desalination Effects of Capacitive Deionization Process Using Activated Carbon Composite Electrodes (활성 탄소 복합 전극을 이용한 Capacitive Deionization 공정의 제염 효과)

  • Lee, Jeong-Won;Kim, Hong-Il;Kim, Han-Joo;Shin, Hyun-Soo;Kim, Jeong-Sik;Jeong, Boong-Ik;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • 제12권3호
    • /
    • pp.287-294
    • /
    • 2009
  • Desalination effects of Capacitive deionization(CDI) process using activated carbon $TiO_2$ composite electrode. In this study, we made the activated carbon electrod and activated carbon $TiO_2$ composite electrode, which analysed at cyclic voltammetry and charge-discharge. The results measured for discharge capacitance in cyclic voltammetry were 125 F/g in activated carbon electrode and capacitance of activatd carbon composite electrode was increased about two time, 243 F/g. The $TiO_2$ content of activated carbon composite electrode was 10 wt.%. When it was added wtih TiO2, electric double layer adsorption content was increased, so it was increased 25% in ion removal ratio of activated carbon electrode.

A Study on the Fabrication and Simulation Analysis of AF-SMES System considering Internal Fault Condition (내부고장을 고려한 AF-SMES 시스템의 시뮬레이션 해석 및 제작에 관한 연구)

  • Kim, A-Rong;Kim, Jae-Ho;Kim, Hae-Jong;Kim, Seok-Ho;Seong, Ki-Chul;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.1203-1204
    • /
    • 2006
  • Recently, utility network is getting more and more complicated and huge. In addition to, demands of power conversion devices which have non-linear switching devices are getting more and more increased. Consequently, according to the non-linear power semiconductor devices, current harmonics are unavoidable. Those current harmonics flow back to utility network and become one of the reasons which make the voltage distortion. On the other hands, voltage sag from sudden increasing loads is also one of the terrible problems inside of utility network. In order to compensate the current harmonics and voltage sag problem, AF(Active Filter) systems could be a good solution method and SMES(Superconducting Magnetic Energy Storage) system is a very good promising source due to the high response time of charge and discharge. Therefore, the combined system of AF and SMES is a wonderful device to compensate both harmonics current and voltage sag. However, unfortunately SMES needs a superconducting magnetic coil. Because of the introduction of superconducting magnetic coil, quench problem caused by unexpected reasons is always existed. In case of discharge operation, quench is a significantly harmful factor according as it decreases the energy capacity of SMES. Therefore, this paper presents a decision method of the specification of the AF-SMES system considering internal fault condition. Especially, authors analyzed the change of the original energy capacity of SMES regarding to the size of resistance caused by quench of superconducting magnetic coil. Finally, based on this simulation, authors manufactured actual Active Filter System using DSP.

  • PDF

Design of 2-4 Cell Li-ion Multi Battery Protection Analog Front End(AFE) IC (2-4 cell 리튬이온 멀티 배터리 보호회로 Analog Front End(AFE) IC 설계)

  • Kim, Sun-Jun;Kim, Jun-Sik;Park, Shi-Hong
    • Journal of IKEEE
    • /
    • 제15권4호
    • /
    • pp.324-329
    • /
    • 2011
  • In recent years, the performance and functions of portable devices has increased. so it requires more power efficiency and energy density while using the battery for a long time. therefore Battery pack which are made up from several battery cells in series in order to achieve higher operating voltage is being used. when using a Li-ion battery, we need a protection circuit to protect from overcharge, over discharge, high temperature and over current. Also, when using battery pack, we need to Cell voltage balancing circuit that each cell in tune with the balancing. In this paper, the proposed IC is applicable by mobile devices as well as E-bike, hybrid vehicles, electric vehicles, and is expected to contribute to the development of domestic PMIC.

Compatibility of Lithium ion Phosphate Battery in Solar off Grid Application

  • Lakshmanan, Sathishkumar;Vetrivel, Dhanapal;Subban, Ravi;R., Saratha;Nanjan, Sugumaran
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권4호
    • /
    • pp.472-478
    • /
    • 2022
  • Solar energy harvesting is practiced by various nations for the purpose of energy security and environment preservation in order to reduce overdependence on oil. Converting solar energy into electrical energy through Photovoltaic (PV) module can take place either in on-grid or off-grid applications. In recent time Lithium battery is exhibiting its presence in on-grid applications but its role in off-grid application is rarely discussed in the literature. The preliminary capacity and Peukert's study indicated that the battery quality is good and can be subjected for life cycle test. The capacity of the battery was 10.82 Ah at 1 A discharge current and the slope of 1.0117 in the Peukert's study indicated the reaction is very fast and independent on rate of discharge. In this study Lithium Iron Phosphate battery (LFP) after initial characterization was subjected to life cycle test which is specific to solar off-grid application as defined in IEC standard. The battery has delivered just 6 endurance units at room temperature before its capacity reached 75% of rated value. The low life of LFP battery in off-grid application is discussed based on State of Charge (SOC) operating window. The battery was operated both in high and low SOC's in off-grid application and both are detrimental to life of lithium battery. High SOC operation resulted in cell-to-cell variation and low SOC operation resulted in lithium plating on negative electrode. It is suggested that to make it more suitable for off-grid applications the battery by default has to be overdesigned by nearly 40% of its rated capacity.

Electrochemical characterization of LiCoO2 thin film by sol-gel process for annealing temperature and time (졸-겔법에 의해 합성한 리튬 코발트 산화물의 열처리 온도와 시간에 따른 전기 화학적 특성)

  • Roh, Tae-Ho;Yon, Seog-Joo;Ko, Tae-Seog
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제24권3호
    • /
    • pp.99-105
    • /
    • 2014
  • $LiCoO_2$ thin film have received attention as cathodes of thin-film microbatteries. In this study, $LiCoO_2$ thin films were synthesized on Au substrates by sol-gel spin coating method and electrochemical properties were investigated under annealing temperature and time. The phycochemical properties of $LiCoO_2$ thin film were investigated by X-ray diffraction, scaning electron microscopy and atomic force microscopy. The electrochemical properties were characterized using galvanostatic charging/discharging cycling tests. From X-ray diffraction, as-grown films annealed at $550^{\circ}C$ and $750^{\circ}C$ are presumed to be spinel structure and a single phase of the layered-rock-salt, respectively. The RMS roughness and grain size of the films which annealed at $750^{\circ}C$ has similar values for annealing time 10 and 30 min, while for annealing time 120 min surface roughness, grain size increase and pore appearance were observed. The first discharge capacity of $LiCoO_2$ thin films annealed at $750^{\circ}C$ for 10, 30 and 120 min is about 54.5, 56.8 and $51.87{\mu}Ah/cm^2{\mu}m$, respectively. Corresponding capacity retention at 50th cycle is 97.25, 76.69, 77.19%.

A Capacitorless Low-Dropout Regulator With Enhanced Response Time (응답 시간을 향상 시킨 외부 커패시터가 없는 Low-Dropout 레귤레이터 회로)

  • Yeo, Jae-Jin;Roh, Jeong-Jin
    • Journal of IKEEE
    • /
    • 제19권4호
    • /
    • pp.506-513
    • /
    • 2015
  • In this paper, an output-capacitorless, low-dropout (LDO) regulator is designed, which consumes $4.5{\mu}A$ quiescent current. Proposed LDO regulator is realized using two amplifier for good load regulation and fast response time, which provide high gain, high bandwidth, and high slew rate. In addition, a one-shot current boosting circuit is added for current control to charge and discharge the parasitic capacitance at the pass transistor gate. As a result, response time is improved during load-current transition. The designed circuit is implemented through a $0.11-{\mu}m$ CMOS process. We experimentally verify output voltage fluctuation of 260mV and recovery time of $0.8{\mu}s$ at maximum load current 200mA.

PSPICE circuit simulation for electrical characteristic analysis of the memristor (멤리스터의 전기적 특성 분석을 위한 PSPICE 회로 해석)

  • Kim, Boo-Kang;Park, Ho-Jong;Park, Yongsu;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제15권2호
    • /
    • pp.1051-1058
    • /
    • 2014
  • This paper presents a Electrical characteristics of the Memristor device using the PSPICE for circuit analysis. After making macro model of the Memristor device for circuit analysis, electric characteristics of the model such as time analysis, frequency and DC analysis according to the input voltage were performed by PSPICE simulation. Also, we made simple circuits of memristor series and parallel structure and analyzed the simulated SPICE results. Finally, we made a memristor-capacitor (M-C) circuit. charge and discharge characteristics were analyzed. In case of input pulse signal of 250 Hz, the Memristor-capacitor circuit showed delay time of 0.6ms, rising time of 0.58 ms and falling time of 1.6 ms.