• Title/Summary/Keyword: Discharge.charge-time

Search Result 241, Processing Time 0.036 seconds

A Performance Testing Device of Drycell (건전지의 성능평가 장치)

  • Jeong, Heon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.171-175
    • /
    • 2011
  • In this paper, I have developed a high-speed and high-resolution measuring device in order to check the performance of drycell. The system is developed for the drycell manufacturing plant. Measuring time is one of key factors to inference on the production speed. So the developed system is designed to generate the classified result up to 1200ea/min. In the other words, each product can be classified within 25ms. There have been many studies to estimate both state of charge as well as state of health, such as OCV (Open Circuit Voltage), SC (Short Circuit) and measuring impedance with frequency pulse. But those methods take a few second due to surface discharge. To overcome the phenomenon, I developed the method to engage the reverse current to two electrodes of battery. As a result, I could achieve to measure the indigenous capacity without the problem of surface discharge.

Partial Discharge Characteristics of Ultra-High Voltage Cable Insulators by Needle Electrode (침 전극에 의한 초고압 케이블 절연재료의 부분방전 특성)

  • Kim, Gyun-Sig;Choi, Beom-Kyu;Byun, Doo-Gyoon;Cho, Kyung-Soon;Kim, Gwi-Yeol;Lee, Chung-Ho;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.477-480
    • /
    • 2004
  • In other to estimate an electrical properties of the cross linked polyethylene cable, the partial discharge properties due to charge of electrode shape(needle and bar) and void size were investigated at room temperature. Fast trip and breakdown time were appeared by the closed of needle electrode. The trip and breakdown voltage depend on insulator thickness. As the result, confirmed larger effect of void size than effect of insulator thickness. The effect of voids size than influence of insulation thickness was dominated by internal an electrode of inner insulators.

  • PDF

The optimization of output coupler reflectivity of high repetitive pulsed Nd:YAG laser system adopted 3-mesh parallel sequential charge and discharge method (3단 병렬 충.방전 방식을 적용한 고반복 펄스형 Nd:YAG 레이저 출력거울 반사율의 최적화)

  • 김휘영;홍수열;김동수
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.3
    • /
    • pp.369-376
    • /
    • 2001
  • The optimization of resonator and laser power supply has been considered to be significant for improving the efficiency of a pulsed Nd:YAG laser system. We have proposed a new method of 3-mesh parallel sequential charge and discharge circuit as a laser power supply; more compact than conventional power supply, competitive in price, easy to control the laser power density according to various material processing, and equipped with the optimum reflectivity of output coupler. In this study, we could find that the maximum laser output was obtained by using 85% of reflectivity in the case of 50[W]-class. In addition using the power supply of new method, it's possible to charge each capacitor bank with a higher energy within the given charging time adopted a new method mentioned above; namely, we can allow each capacitor to have much more charging time and storage energy. So, higher laser output was obtained than conventional power supply.

  • PDF

A Study on Electrical properties of EPR by Irradiated by X-rays (방사선에 조사된 EPR 의 전기적 특성에 관한 연구)

  • Lee, Sung-Il;Iim, Gui-Yeul;Lee, Ho-Sik;Lee, Hee-Gab
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.565-568
    • /
    • 2002
  • The value of charge current, discharge current, $\varepsilon_r$' $\varepsilon_r"$, residual voltage was measured inorder to investigate electric properties in Ethylene Prophylene Rubber for is irradiated $CO^{60}\gamma$ ray 0-38.1 Mrad. The value of charge current and the discharging current of the EPR is influenced by $CO^{60}-{\gamma}$-irradiation dose The charging current and the discharging current of EPR increase, depending on the ratio of degradation. As the irradiation dose is increased, the peak of residual voltage moves to the slorter time. The properties specific electric constant due to time variation was appeared dispersion by plentiful $CO^{60}-{\gamma}$-irradiation dose. The increase of peak in $\varepsilon_r"$ is attrib uted to the irratiation dose almost proportionally.

  • PDF

Effect of the Co$^{60}$ -Rays due to Electric properties of EPR- (EPR의 전기특성에 미치는 방사선의 영향)

  • 이성일
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2002.11a
    • /
    • pp.253-259
    • /
    • 2002
  • The value of charge currnet, discharge current, ${\varepsilon}r^'$,${\varepsilon}r^{'}$ residual voltage was measured inorder to investigate electric properties in Ethylene Prophylene Rubber for is irradiated C0$^{60}$$\gamma$ ray 0~38.1 Mrad. The value of charge current and the discharging current of the EPR is influenced by C0$^{60}$-$\gamma$- irradiation dose. The charging current and the discharging current of EPR increas, depending on the ratio of degradation. As the irradiatin dose is increased, the peak of residual voltage moves to the slorter time. The properties specific electric constant due to time variation was appeared dispersion by plentiful C0$^{60}$$\gamma$- irradiation dose. The increase of peak in ${\varepsilon}r^{'}$ is attrib uted to the irratiation dose almost proportionally.

  • PDF

Neural Network Model for Partial Discharge Pattern Analysis of XLPE/EPR Interface (XLPE/EPR 계면의 부분방전 패턴 분석을 위한 신경망 모형)

  • Cho, Kyung-Soon
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.2
    • /
    • pp.357-364
    • /
    • 2005
  • The prefabricated type used generally in Korea to join cable runs on new installations or to repair broken Cable runs on existing installations, because installation is very simple and save time. This type is a permanent, shielded and submersible cable joint for direct burial or vault application. It confirms to the requirements of IEEE std. 404-1993 by factory testing, but many problems of insulated cable systems are caused by internal defects of the joint part which have to be mounted ensile. Faults arise from impurities or voids. A suitable solution for a monitoring of cable joints during the after-laying test and service is partial discharge detection. Specimen obtained 1mm thickness from the insulation of real power cable and cable joint. <중략>The partial discharges are measured to determine their time dependence for 60 minutes and the influence of applied electrical stress under 30kV. $\Phi-q-n$ properties were measured using detection impedance, high pass filter and computerized data acquisition system. Statistic Value like maximum charge, repetition rate, average charge, etc. are calculated. It is possible to quantitative analysis of $\Phi-q-n$ properties from this statistic value and pattern analysis.

  • PDF

Parallel Load Techinques Application for Transcranial Magnetic Stimulation

  • Choi, Sun-Seob;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.27-32
    • /
    • 2012
  • Transcranial magnetic stimulation requires an electric field composed of dozens of V/m to achieve stimulation. The stimulation system is composed of a stimulation coil to form the electric field by charging and discharging a capacitor in order to save energy, thus requiring high-pressure kV. In particular, it is charged and discharged in capacitor to discharge through stimulation coil within a short period of time (hundreds of seconds) to generate current of numerous kA. A pulse-type magnetic field is formed, and eddy currents within the human body are triggered to achieve stimulation. Numerous pulse forms must be generated to initiate eddy currents for stimulating nerves. This study achieved high internal pressure, a high number of repetitions, and rapid switching of elements, and it implemented numerous control techniques via introduction of the half-bridge parallel load method. In addition it applied a quick, accurate, high-efficiency charge/discharge method for transcranial magnetic stimulation to substitute an inexpensive, readily available, commercial frequency condenser for a previously used, expensive, high-frequency condenser. Furthermore, the pulse repetition rate was altered to control energy density, and grafts compact, one-chip processor with simulation to stably control circuit motion and conduct research on motion and output characteristics.

A Study on the Compensation of Temperature-Dependent Misfiring in AC PDP by the progressively increasing Address Voltage Method (AC PDP의 순차 증가 Address 전압 방식에 의한 고온 오방전 대책에 관한 연구)

  • Kim, J.Y.;Lee, S.J.;Kwon, B.D.;Kim, D.H.;Lee, H.J.;Park, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1623-1627
    • /
    • 2002
  • If the ambient temperature rises in AC PDP, some of the discharged cells arc turned off because of the addressing failure. Particularly, the addressing failure at the last scan line is more serious than at the first scan line. The failure is accompanied with delay of the address discharge and reduction of total charge involved. In order to compensate this kind of misfiling, the progressively increasing address voltage waveform is used instead of constant one. In this method, we found that the total charge and address time at the last scan line are similar to those of the first line. As a result, we can have stable discharge without misfiring even at the high ambient temperature.

  • PDF

Industry safety characteristic of Prismatic EDLCs (각형 전기이중층 커패시터의 산업 안전성)

  • 김경민;장인영;강안수
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.05a
    • /
    • pp.247-257
    • /
    • 2004
  • Electrodes were fabricated based on activated carbon powder BP-20, conducting agent such as Super P, vapor grown carbon fiber (VGCF) and acetylene black (AB), and the mixed binders of flexible poly(vinylidenefluoridehexafluoropropylene) [P(VdF-co-HFP)] and cross linking dispersion agent of polyvinylpyrrolidone (PVP) to increase mechanical strength. According to impedance measurement of the electrode with the addition of conducting agent, we found that it was possible to charge rapidly by the fast steady-state current convergence due to low equivalent series resistance (AC-ESR, fast charge transfer rate at interface between electrode and electrolyte and low RC time constant. The self-discharge of unit cell showed that diffusion process was controlled by the ion concentration difference of initial electrolyte due to the characteristics of Electric Double Layer Capacitor (EDLC) charged by ion adsorption in the beginning, but this by current leakage through the double-layer at the electrode/electrolyte interface had a minor effect and voltages of curves were remained constant regardless of electrode material. We found that the 2.3V/230F grade EDLC would be applied to industrial safety usage such as uninterrupted power supply (UPS) because of the constant DC-ESR by IR drop regardless of discharge current.

  • PDF

Structural Behavior of Mixed $LiMn_2O_4-LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode in Li-ion Cells during Electrochemical Cycling

  • Yun, Won-Seop;Lee, Sang-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.5-5
    • /
    • 2011
  • The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.

  • PDF