• 제목/요약/키워드: Discharge hydrograph

검색결과 153건 처리시간 0.031초

호우사상의 강우강도에 변동하는 단위유량도의 보완적 적용에 관한 고찰 (A Research on a Revised Application of Unit Hydrograph Variant According to Rainfall Intensity in a Rainstorm)

  • 유주환
    • 한국수자원학회논문집
    • /
    • 제44권1호
    • /
    • pp.41-49
    • /
    • 2011
  • 본 연구는 한 유역 내에서 단위유량도의 첨두치가 강우 강도에 따라 변동되는 기존 연구 분석 사례를 근간으로 하여 고찰된다. 시간불변이라는 이론적 기본 가정과 달리 호우별 강우강도에 따라 시변(時變)하는 단위유량도를 설정하고 강우사상에 적용하여 유출수문곡선을 산출하여 검토한다. 이 때 적용되는 단위유량도의 경우 첨두유량과 첨두발생시간은 기왕 연구된 강우강도와의 관계식을 검토하여 이용하고 단위유량도 형상은 산출된 첨두치를 적용한 Nash의 단위유량도로 설정된다. 비교 목적을 위해서 적용하는 유역 평균 단위유량도는 강우사상별로 유도된 26개의 단위유량도의 평균 첨두치에 의한 Nash의 모형이다. 호우사상의 강우강도별로 변동되는 단위유량도와 평균단위유량도로부터 산출된 수문곡선의 첨두유량과 첨두발생시간을 관측수문곡선과 비교한다. 비교한 결과 본 연구에서 보완적으로 제시한 시변(時變)의 단위유량도는 평균 단위유량도에 의해서 계산한 첨두홍수량과 첨두발생시간 보다 관측치에 접근함을 보인다.

한국주요빙계의 소유역에 대한 순간단위권 유도에 관한 연구 (I) (Studies on the Derivation of the Instantaneous Unit Hydrograph for Small Watersheds of Main River Systems in Korea)

  • 이순혁
    • 한국농공학회지
    • /
    • 제19권1호
    • /
    • pp.4296-4311
    • /
    • 1977
  • This study was conducted to derive an Instantaneous Unit Hydrograph for the accurate and reliable unitgraph which can be used to the estimation and control of flood for the development of agricultural water resources and rational design of hydraulic structures. Eight small watersheds were selected as studying basins from Han, Geum, Nakdong, Yeongsan and Inchon River systems which may be considered as a main river systems in Korea. The area of small watersheds are within the range of 85 to 470$\textrm{km}^2$. It is to derive an accurate Instantaneous Unit Hydrograph under the condition of having a short duration of heavy rain and uniform rainfall intensity with the basic and reliable data of rainfall records, pluviographs, records of river stages and of the main river systems mentioned above. Investigation was carried out for the relations between measurable unitgraph and watershed characteristics such as watershed area, A, river length L, and centroid distance of the watershed area, Lca. Especially, this study laid emphasis on the derivation and application of Instantaneous Unit Hydrograph (IUH) by applying Nash's conceptual model and by using an electronic computer. I U H by Nash's conceptual model and I U H by flood routing which can be applied to the ungaged small watersheds were derived and compared with each other to the observed unitgraph. 1 U H for each small watersheds can be solved by using an electronic computer. The results summarized for these studies are as follows; 1. Distribution of uniform rainfall intensity appears in the analysis for the temporal rainfall pattern of selected heavy rainfall event. 2. Mean value of recession constants, Kl, is 0.931 in all watersheds observed. 3. Time to peak discharge, Tp, occurs at the position of 0.02 Tb, base length of hlrdrograph with an indication of lower value than that in larger watersheds. 4. Peak discharge, Qp, in relation to the watershed area, A, and effective rainfall, R, is found to be {{{{ { Q}_{ p} = { 0.895} over { { A}^{0.145 } } }}}} AR having high significance of correlation coefficient, 0.927, between peak discharge, Qp, and effective rainfall, R. Design chart for the peak discharge (refer to Fig. 15) with watershed area and effective rainfall was established by the author. 5. The mean slopes of main streams within the range of 1.46 meters per kilometer to 13.6 meter per kilometer. These indicate higher slopes in the small watersheds than those in larger watersheds. Lengths of main streams are within the range of 9.4 kilometer to 41.75 kilometer, which can be regarded as a short distance. It is remarkable thing that the time of flood concentration was more rapid in the small watersheds than that in the other larger watersheds. 6. Length of main stream, L, in relation to the watershed area, A, is found to be L=2.044A0.48 having a high significance of correlation coefficient, 0.968. 7. Watershed lag, Lg, in hrs in relation to the watershed area, A, and length of main stream, L, was derived as Lg=3.228 A0.904 L-1.293 with a high significance. On the other hand, It was found that watershed lag, Lg, could also be expressed as {{{{Lg=0.247 { ( { LLca} over { SQRT { S} } )}^{ 0.604} }}}} in connection with the product of main stream length and the centroid length of the basin of the watershed area, LLca which could be expressed as a measure of the shape and the size of the watershed with the slopes except watershed area, A. But the latter showed a lower correlation than that of the former in the significance test. Therefore, it can be concluded that watershed lag, Lg, is more closely related with the such watersheds characteristics as watershed area and length of main stream in the small watersheds. Empirical formula for the peak discharge per unit area, qp, ㎥/sec/$\textrm{km}^2$, was derived as qp=10-0.389-0.0424Lg with a high significance, r=0.91. This indicates that the peak discharge per unit area of the unitgraph is in inverse proportion to the watershed lag time. 8. The base length of the unitgraph, Tb, in connection with the watershed lag, Lg, was extra.essed as {{{{ { T}_{ b} =1.14+0.564( { Lg} over {24 } )}}}} which has defined with a high significance. 9. For the derivation of IUH by applying linear conceptual model, the storage constant, K, with the length of main stream, L, and slopes, S, was adopted as {{{{K=0.1197( {L } over { SQRT {S } } )}}}} with a highly significant correlation coefficient, 0.90. Gamma function argument, N, derived with such watershed characteristics as watershed area, A, river length, L, centroid distance of the basin of the watershed area, Lca, and slopes, S, was found to be N=49.2 A1.481L-2.202 Lca-1.297 S-0.112 with a high significance having the F value, 4.83, through analysis of variance. 10. According to the linear conceptual model, Formular established in relation to the time distribution, Peak discharge and time to peak discharge for instantaneous Unit Hydrograph when unit effective rainfall of unitgraph and dimension of watershed area are applied as 10mm, and $\textrm{km}^2$ respectively are as follows; Time distribution of IUH {{{{u(0, t)= { 2.78A} over {K GAMMA (N) } { e}^{-t/k } { (t.K)}^{N-1 } }}}} (㎥/sec) Peak discharge of IUH {{{{ {u(0, t) }_{max } = { 2.78A} over {K GAMMA (N) } { e}^{-(N-1) } { (N-1)}^{N-1 } }}}} (㎥/sec) Time to peak discharge of IUH tp=(N-1)K (hrs) 11. Through mathematical analysis in the recession curve of Hydrograph, It was confirmed that empirical formula of Gamma function argument, N, had connection with recession constant, Kl, peak discharge, QP, and time to peak discharge, tp, as {{{{{ K'} over { { t}_{ p} } = { 1} over {N-1 } - { ln { t} over { { t}_{p } } } over {ln { Q} over { { Q}_{p } } } }}}} where {{{{K'= { 1} over { { lnK}_{1 } } }}}} 12. Linking the two, empirical formulars for storage constant, K, and Gamma function argument, N, into closer relations with each other, derivation of unit hydrograph for the ungaged small watersheds can be established by having formulars for the time distribution and peak discharge of IUH as follows. Time distribution of IUH u(0, t)=23.2 A L-1S1/2 F(N, K, t) (㎥/sec) where {{{{F(N, K, t)= { { e}^{-t/k } { (t/K)}^{N-1 } } over { GAMMA (N) } }}}} Peak discharge of IUH) u(0, t)max=23.2 A L-1S1/2 F(N) (㎥/sec) where {{{{F(N)= { { e}^{-(N-1) } { (N-1)}^{N-1 } } over { GAMMA (N) } }}}} 13. The base length of the Time-Area Diagram for the IUH was given by {{{{C=0.778 { ( { LLca} over { SQRT { S} } )}^{0.423 } }}}} with correlation coefficient, 0.85, which has an indication of the relations to the length of main stream, L, centroid distance of the basin of the watershed area, Lca, and slopes, S. 14. Relative errors in the peak discharge of the IUH by using linear conceptual model and IUH by routing showed to be 2.5 and 16.9 percent respectively to the peak of observed unitgraph. Therefore, it confirmed that the accuracy of IUH using linear conceptual model was approaching more closely to the observed unitgraph than that of the flood routing in the small watersheds.

  • PDF

탱크 모델에 의한 홍수(洪水) 유출량(流出量) 해석(解析)에 관(關)한 연구(硏究) (A study on the flood runoff analysis with TANK MODEL)

  • 홍창선;최한규
    • 산업기술연구
    • /
    • 제3권
    • /
    • pp.95-101
    • /
    • 1983
  • This study aims at the determination of the coefficienties of runoff and infiltration affecting runoff. The rating curve is more available than the peak flood runoff to determine flood control plan of flood control reservoir and the volume of hydroelectric power plant, or to make multipurpose dam. In hydrologic analysis and design, it is necessary to develop relations between precipitation and runoff, possible using some of the factors affecting runoff as parameters. In order to calculate the runoff discharge, the runoff process constituting elements are divided to the surface runoff, the subsurface runoff and the groundwater runoff. By comparing the computed hydrograph with the measured hydrograph, determinned the watershed TANK Model constant Varying the tank model constant for approximating the computed hydrograph to the measured hydrograph.

  • PDF

목감천 복원설계를 위한 비정상성을 고려한 설계홍수량의 산정 (Estimation of Design Discharge Considering Nonstationarity for River Restoration in the Mokgamcheon)

  • 이길성;오진호;박기두;성장현
    • 대한토목학회논문집
    • /
    • 제33권4호
    • /
    • pp.1361-1375
    • /
    • 2013
  • Lee et al. (2011)이 제시한 목감천 유역의 하천복원 설계절차에 근거하여 수리구조물의 설계와 관련 있는 설계홍수량을 산정에 있어 비정상성을 고려하여 산정하였다. 본 연구의 목적은 목감천 유역에서 비정상성을 고려한 새로운 설계홍수량을 제안하기 위함이다. 설계홍수량 산정방법인 설계-호우단위도법과 직접 홍수빈도해석법을 적용하였으며, 각각의 방법에 사용되는 빈도분석은 NCAR (National Center for Atmospheric Research)에서 개발된 extRemes 모형을 통하여 비정상성을 고려하였다. 직접 홍수빈도해석의 방법은 유량으로부터 직접 빈도해석을 수행한다는 점에서 신뢰성이 기대되지만, 설계-호우단위도법보다 다소 과소 추정되었다. 따라서 가장 크게 산정된 설계호우-단위도법의 100년 빈도 설계홍수량을 목감천 유역의 설계홍수량으로 결정하였다.

지상인자에 의한 순간단위도 유도와 유출량 예측 (Derivation of the Instantaneous Unit Hydrograph and Estimation of the Direct Runoff by Using the Geomorphologic Parameters)

  • 천만복;서승덕
    • 한국농공학회지
    • /
    • 제32권3호
    • /
    • pp.87-101
    • /
    • 1990
  • The purpose of this study is to estimate the flood discharge and runoff volume at a stream by using geomorphologic parameters obtained from the topographic maps following the law of stream classification and ordering by Horton and Strahier. The present model is modified from Cheng' s model which derives the geomorphologic instantaneous unit hydrograph. The present model uses the results of Laplace transformation and convolution intergral of probability density function of the travel time at each state. The stream flow velocity parameters are determined as a function of the rainfall intensity, and the effective rainfall is calculated by the SCS method. The total direct runoff volume until the time to peak is estimated by assuming a triangular hydrograph. The model is used to estimate the time to peak, the flood discharge, and the direct runoff at Andong, Imha. Geomchon, and Sunsan basin in the Nakdong River system. The results of the model application are as follows : 1.For each basin, as the rainfall intensity doubles form 1 mm/h to 2 mm/h with the same rainfall duration of 1 hour, the hydrographs show that the runoff volume doubles while the duration of the base flow and the time to peak are the same. This aggrees with the theory of the unit hydrograph. 2.Comparisions of the model predicted and observed values show that small relative errors of 0.44-7.4% of the flood discharge, and 1 hour difference in time to peak except the Geomchon basin which shows 10.32% and 2 hours respectively. 3.When the rainfall intensity is small, the error of flood discharge estimated by using this model is relatively large. The reason of this might be because of introducing the flood velocity concept in the stream flow velocity. 4.Total direct runoff volume until the time to peak estimated by using this model has small relative error comparing with the observed data. 5.The sensitivity analysis of velocity parameters to flood discharge shows that the flood discharge is sensitive to the velocity coefficient while it is insensitive to the ratio of arrival time of moving portion to that of storage portion of a stream and to the ratio of arrival time of stream to that of overland flow.

  • PDF

한천유역의 수문학적 특성을 고려한 관측자료 기반 홍수량 산정 (Estimation of Flood Discharge Based on Observation Data Considering the Hydrological Characteristics of the Han Stream Basin in Jeju Island)

  • 양성기;김민철;강보성;김용석;강명수
    • 한국환경과학회지
    • /
    • 제26권12호
    • /
    • pp.1321-1331
    • /
    • 2017
  • This study reviewed the applicability of the existing flood discharge calculation method on Jeju Island Han Stream and compared this method with observation results by improving the mediating variables for the Han Stream. The results were as follows. First, when the rain-discharge status of the Han Stream was analyzed using the flood discharge calculation method of the existing design (2012), the result was smaller than the observed flood discharge and the flood hydrograph differed. The result of the flood discharge calculation corrected for the curve number based on the terrain gradient showed an improvement of 1.47 - 6.47% from the existing flood discharge, and flood discharge was improved by 4.39 - 16.67% after applying the new reached time. In addition, the sub-basin was set separately to calculate the flood discharge, which yielded an improvement of 9.92 - 32.96% from the existing method. In particular, the steepness and rainfall-discharge characteristics of Han Stream were considered in the reaching time, and the sub-basin was separated to calculate the flood discharge, which resulted in an error rate of -8.77 to 8.71%, showing a large improvement of 7.31 - 28.79% from the existing method. The flood hydrograph also showed a similar tendency.

미계측 유역의 유출량 산정을 위한 합성단위도 개발 (Development of Synthetic Unit Hydrograph for Estimation of Runoff in Ungauged Watershed)

  • 최용준;김주철;정동국
    • 한국물환경학회지
    • /
    • 제26권3호
    • /
    • pp.532-539
    • /
    • 2010
  • The synthetic unit hydrograph is developed and verified using Nash model and characteristic velocities considering geomorphological dispersion in this present study. Application watersheds are selected 5 subwatersheds of Bocheong basin. The mean and variance of hillslope and stream path length are estimated in each watershed with GIS. Characteristic velocities are calculated using estimated path lengths and moment characteristics of rainfall-runoff data. Characteristic velocities of random devised 7 ungauged watersheds are estimated through regional analysis of chracteristic velocities in guaged watershed. And Nash model parameters and IUH are derived using characteristic velocities and path length in the gauged and ungauged watershed. The result to compare of IUH about gauged watershed and random devised ungauged watershed in application watershed presents coherently hydrologic response characteristics that peak discharge is reduced and peak time is extended. In conclusion, Developed synthetic unit hydrograph in this study expects that it is useful method to estimate runoff discharge for managing of water pollution in ungauged watershed.

웹기반 홍수관리시스템 구현을 위한 홍수분석모듈개발 (Development of Flood Analysis Module for the Implementation of a Web-Based Flood Management System)

  • 정인균;박종윤;김성준;장철희
    • 한국농공학회논문집
    • /
    • 제56권6호
    • /
    • pp.103-111
    • /
    • 2014
  • This study was to develop the flood analysis module (FAM) for implementation of a web-based real-time agricultural flood management system. The FAM was developed to apply for an individual watershed, including agricultural reservoir. This module calculates the flood inflow hydrograph to the reservoir using effective rainfall by NRCS-CN method and unit hydrograph calculated by Clark, SCS, and Nakayasu synthetic unit hydrograph methods, and then perform the reservoir routing by modified Puls method. It was programmed to consider the automatic reservoir operation method (AutoROM) based on flood control water level of reservoir. For a $15.7km^2$ Gyeryong watershed including $472{\times}10^4m^3$ agricultural reservoir, rainfall loss, rainfall excess, peak inflow, total inflow, maximum discharge, and maximum water level for each duration time were compared between the FAM and HEC-HMS (applied SCS and Clark unit hydrograph methods). The FAM results showed entirely consistent for all components with simulated results by HEC-HMS. It means that the applied methods to the FAM were implemented properly.

삼각도형에 의한 단위도의 유도에 관한 연구 (A Study on the Unit Hydrograph Derivation by the Triangular Form)

  • 윤학기;김시원;서승덕
    • 한국농공학회지
    • /
    • 제19권2호
    • /
    • pp.4377-4384
    • /
    • 1977
  • The curvilinear hydrograph can be replaced by an equivalent triangular hydrograph which is more easily constructed and, for routing through reservoirs or stream channels, gives results about as accurate as those obtained using the curvilinear hydrograph. A synthetic hydrograph is prepared using the data from a number of watersheds to develop a dimensionless unit hydrograph applicable to ungauged watersheds. The dimensionless unit hydrograph for the NakDong River Basin was prepared from the unit hydrographs of a variety of nine subwatersheds. The equation for the peak rate of flow (unit volume of runoff in 1.0mm) was derived as {{{{ { q}_{p } = { 0.21AR} over { {T }_{p } } }}}} The results summarized in this study are as follows: 1) It found that the watershed lag time (Lg, hrs) could be expressed by Lg=0.253(L.Lca)0.4171 The product L.Lca is a measure of the size and shape of the watershed. Correlation coefficient for Lg was 0.97 which defined with high significance. 2) The base length of the unitgraph, in hours, was adopted as Tb=17.51+2.073Lg with high significant correlation coefficient, 0.92. 3) Time in hour from start of rise to peak rate (TP) generally occured at the position of 0.289 Tb with some indication of higher values for larger watershed. 4) Triangular hydrograph is a dimensionless unitgraph prepared from the 40 unitgraphs. The equation is shown as {{{{ { q}_{p } = { K.A.R} over { { T}_{p } } }}}}. The constant K=0.21 is defined to NakDong River basin. 5) In the light of the results analyzed in this study, average errors in the peak discharge of the Trjangular unitgraph was estimated as 5.34 percent to the peak of observed average unitgraph. Each ordinate of the Triangular unitgraph was approached closely to the observed one.

  • PDF

소규모유역에서 설계강우의 분포형태에 따른 첨두유량의 변화연구 (Peak Discharge Change by Different Design Rainfall on Small Watershed)

  • 김병호;장석환
    • 물과 미래
    • /
    • 제24권1호
    • /
    • pp.93-97
    • /
    • 1991
  • 소규모유역에서 수공구조물의 설계를 위하여는 첨두홍수량을 알아야 하며, 첨두홍수량을 계산하기 위하여는 단순 첨두홍수량 산정공식을 이용하거나 유출모의모형등을 이용하게된다. 이때에 해당 유역에 적용될 설계강우의 결정이 필요하며, 설계 강우분포형으로는 등분포 강우, 삼각형분포 강우, 사다리꼴분포 강우와 Huff분포형 강우등의 단순강우분포형이 고려된다. 본 연구에서는 이들 설계 강우분포형에 따라 변화하는 첨두홍수량을 비교 분석하고자 한다.

  • PDF